

Automating farming operations using

robotic technologies

Submitted to the Graduate School of Natural and Applied Sciences in

partial fulfillment of the requirements for the degree of

Master of Science / Doctor of Philosophy

in Robotics Engineering

by

Basheer Altawil

ORCID 0000-0002-5716-7587

January ,2023

This is to certify that we have read the thesis Automating farming operations using

robotic technologies submitted by Basheer Altawil, and it has been judged to be

successful, in scope and in quality, at the defense exam and accepted by our jury as a

MASTER’S THESIS.

APPROVED BY:

Advisor:

 Asst. Prof. Dr. Fatih Cemal CAN ………….

 İzmir Kâtip Çelebi University

Committee Members:

 Prof. Dr. Levent ÇETİN …………

 İzmir Kâtip Çelebi University

 Asst. Prof. Dr. Murat AKDAĞ ………….

 Dokuz Eylül University

Date of Defense: January 23, 2023

ii

Declaration of Authorship

I, Basheer Altawil, declare that this thesis titled Automating Farming Operations

Using Robotic Technologies and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for the Master’s /

Doctoral degree at this university.

• Where any part of this thesis has previously been submitted for a degree or any

other qualification at this university or any other institution, this has been

clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given. This

thesis is entirely my own work, with the exception of such quotations.

• I have acknowledged all major sources of assistance.

• Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself.

Date: 23.01.2023

iii

Automating Farming Operations Using Robotic

Technologies

Abstract

Recent years have seen a rise in interest in agricultural robots, both academically and

commercially. This is since agricultural robotics tackles important concerns such as

seasonal labor shortages, during harvest, as well as the growing concern over

ecologically friendly techniques. On the one hand, several distinct agricultural robots

have already been created for a variety of purposes, with varying degrees of success,

including monitoring, spraying, harvesting, transport, etc.

It is more practical to have a simple environment that can include all of the

characteristics and components required for controlling the entire system, including

middleware, hardware, and software. This ecosystem can assist users, developers, and

investors in growing their aspirations and businesses to meet both market demands and

novel approaches to agricultural issues.

This study identifies the state-of-the-art and provides a new methodology for

multitasking in performing agriculture operations. In addition, agriculture automation is

unfeasible and unprofitable as a result of these difficulties, we used Robot Operating

System (ROS) to provide potential solutions to these issues, and the potential is

increased when paired with other open-source technologies, such as android or IoT.

For individuals working in the robotics industry, the open-source ROS framework has a

lot of potential. It is simple to use and simple to install. Developers may be able to engage

with it and create new products that offer insights into the requirements of people and

the future.

iv

In this paper, we design a four degrees of freedom (4DoF) robotic arm with a different

mechanism that has a different configuration. It has two grippers to be easily integrated

with ROS, and it can work synchronously with other hardware, sensors, cameras, and

agricultural machines concerning farming operations.

The robotic arm can be easily integrated with mobile platforms where it can

autonomously work in agricultural space without facing any challenges. In conclusion,

we believe that this new configuration will open a door for agricultural tasks to be easily

automated and achieved using robotic technologies.

Keywords: ROS, IoT, Mechanism, Robot Manipulator, Mobile Platforms

v

Robotik Teknolojileri Kullanarak Tarım Operasyonlarını

Otomatikleştirme

Öz

Son yıllarda, hem akademik hem de ticari olarak tarım robotlarına olan ilgide bir artış

görüldü. Bunun nedeni, tarımsal robot teknolojisinin, hasat sırasındaki mevsimsel işçi

sıkıntısı gibi önemli endişeleri ve ayrıca çevre dostu tekniklere yönelik artan endişeyi

ele almasıdır. Bir yandan, izleme, ilaçlama, hasat, nakliye vb. dahil olmak üzere çeşitli

amaçlar için farklı derecelerde başarı gösteren farklı tarım robotu yaratılmıştır.

Ara yazılım, donanım ve yazılım dahil olmak üzere tüm sistemi kontrol etmek için

gereken tüm özellikleri ve bileşenleri içerebilen basit bir ortama sahip olmak daha

pratiktir. Bu ekosistem, kullanıcıların, geliştiricilerin ve yatırımcıların hem pazar

taleplerini hem de tarım sorunlarına yeni yaklaşımları karşılama isteklerini ve

işletmelerini büyütmelerine yardımcı olabilir.

Bu çalışma, en son teknolojiyi tanımlar ve tarım operasyonlarının gerçekleştirilmesinde

çoklu görev için yeni bir metodoloji sağlar. Ayrıca, tarım otomasyonu bu zorlukların bir

sonucu olarak uygulanamaz ve kârsızdır, bu sorunlara potansiyel çözümler sağlamak

için Robot İşletim Sistemini (ROS) kullandık ve android, IoT veya benzeri diğer açık

kaynak teknolojilerle eşleştirildiğinde potansiyel artar.

Robotik endüstrisinde çalışan bireyler için açık kaynaklı ROS çerçevesi çok fazla

potansiyele sahiptir. Kullanımı ve kurulumu basittir. Geliştiriciler, onunla etkileşim

kurabilir ve insanların ve geleceğin gereksinimlerine ilişkin içgörüler sunan yeni ürünler

oluşturabilir.

Bu tezde, farklı bir konfigürasyona sahip farklı bir mekanizmaya sahip dört serbestlik

dereceli (4DoF) bir robotik kol tasarlıyoruz. ROS'a kolayca entegre edilebilecek iki adet

kıskaca sahiptir ve diğer donanımlar, sensörler, kameralar ve tarım makineleri ile

senkron çalışabilmektedir. Robotik kol, tarama alanında herhangi bir zorlukla

karşılaşmadan otonom olarak çalışabileceği mobil platformlara kolayca entegre

vi

edilebilir. Sonuç olarak, bu yeni konfigürasyonun, tarım işlerinin robotik teknolojiler

kullanılarak kolayca otomatikleştirilmesi ve gerçekleştirilmesi için bir kapı açılacağına

inanıyoruz.

Anahtar Kelimeler: ROS, IoT, Mekanizma, Robot Manipülatörü, Mobil Platformlar.

vii

To my mother, father and family,

To my dear friends,

viii

Acknowledgment

I'd want to express my gratitude and appreciation to my supervisor, Asst. Prof. Dr. Fatih

Cemal CAN, who helped me with all aspect of this study preparation, including my

academic and social lives. I am deeply indebted for his generous support throughout the

entire process of writing this thesis. I would especially like to extend my gratitude to all

of my professors, mentors, and other faculty members who gave me with priceless

advice that enabled me to successfully complete academic journey in the university.

 I want to express my gratitude to my genuine, kind friends, who have become my second

family while I've been living overseas. They have helped me overcome the difficulties

that come with living apart from family and have held my hand when I've fallen in my

life's path. I want to express my gratitude to my loving parents, my brother Mohammed,

and my sisters who supported me with their unwavering tolerance and excellent Dua—

the most potent tool for bolstering me when I was weak—until I reached the point where

I am now.

ix

Table of Contents

Declaration of Authorship ... ii

Abstract .. iii

Öz ... v

Acknowledgment ... viii

List of Figures .. xiii

List of Tables ... xvi

List of Abbreviations ... xvii

List of Symbols .. xviii

1 Introduction ... 1

1.1. Motivation .. 1

1.2. Literature Review ... 2

1.3. Agricultural Measurements and Robotization ... 6

2 Kinematics and Kinetic Analysis .. 8

2.1. Denavit–Hardenberg Based Analysis .. 8

2.1.1. Denavit-Hartenberg Axis ... 8

2.1.2. Homogeneous Transformation Matrices (HTM) 10

2.1.3. Robot arm matrices formation and forward kinematics 12

2.1.4. Robot arm inverse kinematics .. 20

2.2. Jacobian analysis ... 24

2.2.1. Obtaining the direction and location of each joint axis........................ 26

x

2.2.2 Obtaining the position vector of the end effector concerning all frames

 27

2.2.3. Obtaining Jacobian matrices .. 29

2.3. Three DoF Parallel robot manipulators with gyroscope trajectory generation

 31

2.3.1. Kinematic analysis and design ... 32

2.3.2. Working mode regions .. 36

2.4. Serial Manipulator Kinetic Analysis ... 37

2.4.1. General form of dynamical equation ... 37

2.4.1.1. Inertia Matrix calculations (𝑀𝑚𝑎𝑡𝑟𝑖𝑥) .. 38

2.4.1.2. Coriolis, Centrifugal force matrix calculations (𝐶𝑚𝑎𝑡𝑟𝑖𝑥).............. 40

2.4.2. Joints Torque Calculations and their Graphics 43

2.5. Serial Manipulator Workspace Analysis ... 45

3 Design and Implementing .. 47

3.1. Parts CAD design using SOLIDWORKS ... 47

3.1.1. Links design ... 48

3.1.2. Joints design ... 51

3.1.3. Gripper’s design ... 52

3.2. Actuator’s selection (LX-16A Servo motor)... 53

3.3. Servo controllers and drivers’ selection .. 54

3.3.1. Bus servo terminal.. 54

3.3.2. Bus servo controller ... 55

xi

4 Controlling and Software ... 57

4.1. Robotic Operating System (ROS) ... 57

4.2. Preparing ROS Environment and its operating system 59

4.2.1. Ubuntu 18.04 installation neither in virtual Box nor in dual bot 60

4.2.2. ROS Melodic installation ... 61

4.2.3. Setting and preparing ROS workspace (Catkin_ws) 62

4.2.4. Setting and preparing ROS packages ... 62

4.3. Preparing the physical characteristics of the robot 63

4.3.1. SOLIDWORK to URDF preparation ... 63

4.3.2. AIBOMECH Agrobot packages preparation 67

4.3.3. AIBOMECH Agrobot MOVEIT package preparation 69

4.4. Building the main structure of the control algorithm 74

4.4.1. Building the architecture of the ROS controller 76

4.4.2. Controlling the inputs coming from the agricultural system 77

4.4.3. ROS and Arduino control and communicating structure 78

5 Conclusion ... 80

References ... 82

Appendices .. 88

Appendix A Kinematic, and Workspace Calculations ... 88

Appendix B Dynamic Calculations .. 104

Appendix C Arduino Microcontroller Codes .. 135

xii

Appendix D ROS packages and Codes ... 145

Curriculum Vitae ... 170

xiii

List of Figures

Figure 1.1 Harvesting Robotic Arm, Source [3] ... 2

Figure 1.2 Gazebo Simulator ,Source [8] ... 4

Figure 1.3 MOVEIT MOVE_GROUP node ,Source [13] ... 5

Figure 1.4 4DoF Serial manipulator CAD Design and assembly 5

Figure 1.5 Farms Robotization ,Source [7] .. 7

Figure 2.1 DH link parameters ... 9

Figure 2.2 AIBOMECH Agrobot Arm Kinematic labeling 11

Figure 2.3 AIBOMECH Agrobot Arm first two link labelling 20

Figure 2.4 Roll, pitch, and yaw angles. .. 22

Figure 2.5 3DoF parallel robot manipulator CAD Design 33

Figure 2.6 3DoF parallel robot manipulator 3D Printed parts 33

Figure 2.7 3DoF parallel manipulator kinematic labelling 34

Figure 2.8 Elbow down .. 34

Figure 2.9 Elbow up ... 34

Figure 2.10 First Joint Torque ... 43

Figure 2.11 Second Joint Torque .. 44

Figure 2.12 Third Joint Torque ... 44

Figure 2.13 Fourth Joint Torque ... 44

Figure 2.14 T1 , T2 , T3 ,and T4 combined plot .. 45

xiv

Figure 2.15 Grippe-1, Gripper-2 Workspace Visualization 46

Figure 3.1 Manipulator mechanical design (CAD Design) 48

Figure 3.2 Robot arm base ... 49

Figure 3.3 Robot arm base link .. 49

Figure 3.4 Link1,2 of the robot arm ... 50

Figure 3.5 Robot arm wrist link ... 50

Figure 3.6 Servo backside connection ... 51

Figure 3.7 Servo frontside connection ... 51

Figure 3.8 End effector grippers .. 53

Figure 3.9 LX-16A Servo motor .. 54

Figure 3.10 LX-16A Servo debug board... 55

Figure 3.11 Bus Servo Controller ... 56

Figure 3.12 Connection Diagram of servo entire system .. 56

Figure 4.1 Ubuntu operating system .. 60

Figure 4.2 Ubuntu Booting and Ubuntu system allocating .. 61

Figure 4.3 Ubuntu system settings and preparation ... 61

Figure 4.4 URDF exporter selection .. 64

Figure 4.5 URDF Axes and joints naming ... 64

Figure 4.6 SOLIDWORKS parts plane selection .. 65

Figure 4.7 Placing axes on SOLIDWORKS design ... 65

xv

Figure 4.8 Defining the robot parameters ... 66

Figure 4.9 Setting up robot links properties .. 66

Figure 4.10 Saved version of URDF file .. 67

Figure 4.11 Moveit! Setup Assistant ... 69

Figure 4.12 Moveit! Setup files loading ... 70

Figure 4.13 Self-collision matrix generation .. 70

Figure 4.14 Moveit planning groups ... 71

Figure 4.15 Planning Groups setting ... 71

Figure 4.16 Planning Groups setting ... 72

Figure 4.17 Robot Poses preparing ... 72

Figure 4.18 Target1 task preparation .. 73

Figure 4.19 Target2 task preparation .. 73

Figure 4.20 Setup ROS Controllers .. 74

Figure 4.21 File configuration Saving .. 74

Figure 4.22 Entire system controlling Algorithm ... 75

Figure 4.23 RVIZ with its joint publisher GUI ... 77

Figure 4.24 Path planning with MOVEIT .. 77

Figure 4.25 The internal control algorithm of the robot arm 78

Figure 4.26 ROS and Arduino Control Structure... 78

xvi

List of Tables

Table 2.1 Denavit-Hardenberg classical Convention Table 12

Table 2.2 HTM for link-1(frame 0)... 14

Table 2.3 HTM for link-2(frame-1) .. 15

Table 2.4 HTM for link-3(frame2).. 15

Table 2.5 HTM for link-3(frame3).. 16

Table 2.6 HTM for link-4 (frame4e1) (End effector-1) ... 17

Table 2.7 HTM for for link-4 (frame4e2) (End effector-2) 18

Table 2.8 Three DoF Manipulator working mode regions 36

Table 2.9 Christoffel Symbols 𝑐𝑖𝑗𝑘 values ... 41

xvii

List of Abbreviations

HTM Homogeneous transformation matrices

DH Denavit Hartenberg

IK Inverse Kinematics

CFDH Coordinate-Fixed Denavit–Hartenberg Method

(PoE) Product of Exponentials representation

URDF Universal Robot Description Format

XML

eXtensible Markup Language

ROS Robotic Operating System

GHC Green House chambers

DoF Degrees of freedom

Rmn The rotation matrix between axis m to n

𝑇𝑚
𝑛 The transformation matrix between axis m to n

xviii

List of Symbols

𝑰𝒊 Robot Link Inertia [kg.𝑚2]

V Linear Velocity [m/s]

𝝎 Angular Velocity[rad/s]

𝝉 Robot Joints Torque [kg.cm]

𝐹𝑒 Force Exerted on Robot Joints [N]

𝑓𝑟 Friction force [N]

𝑚𝑖 Manipulator Link Mass[kg]

𝑎𝑖 Manipulator Link Length[m]

1

Chapter 1

1 Introduction

In recent years, farming activities have become highly expensive, demanding, and

difficult to perform. One of the emerging technologies that will change, revolutionize,

and address challenges and difficulties in the agriculture sector is robot farmers. To

maximize the efficiency and production of any agriculture system, it is now necessary to

combine agriculture and technology tools, making it simpler for farmers to produce a

large amount of food that can fit the market needs. As a result, by 2050, the total cost of

agriculture and technology is expected to be roughly $240 billion [1].

The future of robotic agriculture lies in agricultural robots’ solutions, especially because

soil and field crops are being severely damaged by climate change. Agricultural robotics

makes precision agriculture possible and more productive by automating the slow and

repetitive tasks that farmers perform during work, such as planting seeds and harvesting

crops, weeding, and farm management [2]. Agri-robotics can handle variations in crop

types, soil moisture content, growth follows, and farm scales including field and sub-

field, as well as greenhouse chambers (GHC), glasshouse, vertical farms, and hydroponic

close and open systems [2]–[4].

1.1. Motivation

Harvesting, planting, irrigation, and weeding are some of the most interesting tasks that

everybody working in the agriculture field tries to implement robotic technology on

them. Therefore, modern farms are supposed to provide higher-quality crops at reduced

costs in a sustainable manner that is less reliant on manpower. Digital farming and site-

specific precision management are two examples of prospective solutions for those tasks’

implementation. Furthermore, Reactions to this expectation, which is influenced by

factors other than the sensor technology, but it is the continual collection of field data

that is only possible with technology. Agricultural mobile robot manipulators, data

processing, and autonomous robots, when used properly, can make this possible.

Scientists, farmers, and growers in the agricultural industry are all dealing with the same

2

issues (Figure 1.1) [4], [5]. Their main goal is Producing more food on less land in a

sustainable manner is a challenge that is a suitable strategy to address the needs of the

9.8 billion people expected by 2050[2].

Moreover, it is becoming more difficult to manage all of these technologies, and it's

becoming more complex to cover all of the details with limited resources of robotics

software and hardware. As a result, using the Robotic Operating System (ROS) is

preferred, as it can simplify all complex operations in one package.

Figure 1.1: Harvesting Robotic Arm, Source [3]

With this robotic platform, it is easy and simple to be able to spray targets, pluck foliage,

and harvest specific fruits (detects the fruit, determines its ripeness, moves towards the

fruit, grasps it, and softly detaches it). This research will focus on the development of the

AIBOMECH Agrobot harvesting robot manipulator in Crops that we are planning to use

in farming and agriculture for different [3], [6].

1.2. Literature Review

Robot arms have long been used in agriculture, particularly in broad-acre applications,

horticulture, and livestock operations. Modern agriculture is highly industrialized, with

hundreds of different equipment and machinery [3]. This opens the door for robotic

applications, as computer science advances promise better productivity and safety. At a

time when farming efficiency has plateaued as a result of the effective integration of

bigger irrigation systems and crop diversification, such technology is desired. As a result,

the purpose of this thesis project was to serve the agricultural industry using a robotic

3

arm that can be easily mounted on a mobile platform. It is also one of several examples

of multi-DOF robotic arms utilized in the agriculture business.

A basic articulated SCARA spatial manipulator with full 4-DOF will be used to harvest

crops and can be readily placed on a wheeled robot. Several agricultural arms in the

literature, on the other hand, are attached to a base and are frequently neither robustly

constructed nor propelled by workspace-dense manipulation. The ones that are installed

are having their programming platform and it is difficult to be robustly integrated with

other systems. However, our AIBOMECH Agrobot Crop arm was developed for high

precision and for multi-purposes that will be implemented especially in the agriculture

field[7].

In robotic development, simulation approaches have played a vital role in the rapid

verification of new prototypes, algorithms, and/or applications of motion in robotic

fields, as well as a system performance optimization. A robotic simulator may simulate

the motion of robots and all items in a virtual work envelope without relying on an actual

complete hardware system, saving both money and time.

This has sparked a surge in interest in robotic simulation in recent years and became a

must case to build any robotic system (Figure 1.2)[8]. Modeling and rendering of a robot

and its environment have been thoroughly researched in their most basic form to be

implemented in the environment around us.

Robot manufacturers such as ABB, KUKA, Staubli, Universal robot, and others have

developed simulation suits for their robots for KUKA Work Visual, which allow robotics

programs to be safely written, debugged off-line, and tested on an actual robot, but third-

party hardware and services, such as sensor-based actions or physical engines, are hard

to integrate with more complex applications like these[8].

There are many software simulators for robot manipulators and differential mobile

robots, and the one we'll use is Robot Operation System (ROS). It's a robotic middleware

that provides software frameworks for robotic software development. Many open-source

implementations of common robotics functions and algorithms can be found in ROS.

Packages provided in ROS deployments arrange these open-source implementations,

while others are developed by people and released through code-sharing sites like

GitHub. ROS has also been the most extensively utilized platform for robotic research in

recent years [9].

4

Figure 1.2: Gazebo Simulator ,Source [8]

In this thesis, we offer a rapid and modular architecture that incorporates the complete

system design, modeling, kinematics, Jacobian, control, and visualization configuration

process. A case study of an arm manipulation tasks simulation in an RVIZ, Gazebo in

integration with MOVEIT.They can display and demonstrates the methods that we will

use for robot tasks like path planning, picking, and place for harvesting purposes.

Using the ROS MOVEIT and Navigation Stack Technical is one of the most valuable

and interesting topics for ROS developers. In ROS, MOVEIT offers primary

manipulation capabilities. It has the potential to develop and incorporate both library

capabilities and a vibrant community. As a result, it has manipulation, motion planning,

control, and mobile manipulation capabilities. Furthermore, having a robust community

of users and developers aids in the maintenance and extension of new applications,

allowing for greater work flexibility and accuracy [10], [11].

The architecture of MOVEIT is seen in Figure 6. Its principal node is named MOVE

GROUP. It's made to be light, with a wide range of capabilities and integrated kinematics,

motion planning, and perception. When contrasted to Arm Navigation, it employs a

plugin-based approach (inspired by ROS) that significantly enhances extensibility. Users

may easily add and share features such as a new pick and place implementation or motion

planning that has been organized using a plugin architecture.

 MOVEIT’s ability to employ plugins is a crucial feature that distinguishes it from Arm

Navigation [12].We can say that the heart of MOVEIT is the MOVE_GROUP node

(Figure 1.3) [8], which functions as an integrator of the robot's many components and

offers actions/services based on the user's demands. Looking at the architecture, it's

evident that the MOVE_GROUP node collects robot data in the form of topics and

5

services, such as the robot's point cloud, joint state, and transforms (TFs). It gathers robot

kinematics data from the parameter server, including the Unified Robot Description

Format (URDF), the Semantic Robot Description Format (SRDF), and configuration

files. While creating a MoveIt! package for our robot, the SRDF file, and configuration

files are created [13].

Figure 1.3: MOVEIT MOVE_GROUP node ,Source [13]

Introducing our own articulated SCARA manipulator mechanism, see Figure 1.4) will

provide various capabilities and benefits to farm robots that will be readily integrated

with the ROS community. The main benefit is that it eliminates the term "barrier to

entry," which is frequently used in the context of robotics software engineering and refers

to the amount of time, effort, and experience that a new user must have to integrate

software components with any brand of a farming robotics system.

Figure 1. 4: 4DoF Serial manipulator CAD Design and assembly

6

For example, creating a virtual model of the robot's geometry and kinematics,

customizing configuration and design files, choosing the fastest algorithmic approach for

a specific application, and finding the best parameters for various algorithms that can be

extremely simple with a very useful workspace and mechanism manipulation that will

allow the farmer to easily employ them in their tasks are some of the advantages that will

be added to robot farming technologies[14].

1.3. Agricultural Measurements and Robotization

 A set of tools with comparable interfaces, sensors, actuators, and similar power and

communication requirements were designed to illustrate the modularity and feasibility of

any agricultural robotic system. This thesis' instrumentation aims to take advantage of

approaches for collecting various farm data, such as environmental parameters like

temperature and air quality at the same time using robot arm harvesting tasks for different

types of crops. These techniques, which have been presented in previous research, are

introduced here, and each is packed into the modular equipment shown in this project,

see Figure 1.5[7].

In the past, spectroscopic approaches such as detecting the chlorophyll content via light

reflectance were frequently employed to assess plant health. Several distinct forms of

vegetation indices, such as the Normalized Difference Vegetation Index (NDVI) or the

Modified Simple Ratio (MSR), have been used to quantify leaf cover or crop

development within a confined area with differing degrees of performance.

While the majority of these experiments and tails focus on visible light, infrared and near-

infrared light have also been utilized to investigate plant cell wall compositional

changes[5]. This technique is completely non-destructive, making it simple to examine

not only the impacts of stress on plants but also soil health indicators like water retention

and organic carbon concentration. Measuring Ph, electrical conductivity, soil properties,

and soil characteristics must be included to get good productivity for farmers. These all

measurements are being run using automation technologies in farming. However, this

toolkit is far from comprehensive, but it includes areas of a farm that may require regular

monitoring and repair. The difference in tooling, on the other hand, poses a distinct

problem in that the shape of the parts, and form factors of each device modify the overall

7

kinematics of the robotic arm that will be used to approach to the tasks needed to be

performed during robot working.

Figure 1.5: Farms Robotization ,Source [7]

The changing kinematics, together with the challenges of managing a serial linkage

installed on a flexible base, create intriguing control concerns with many solutions [7].

Therefore, it became important to integrate and deploy robotic technology in farming to

mitigate all of these issues and make the output of the targeted regions more dynamic

and efficient.

8

Chapter 2

2 Kinematics and Kinetic Analysis

In this section, the kinematics analysis, dynamics analysis, and mathematical

computations will be present to achieve the next parts which will depend on this

chapter.

2.1. Denavit–Hardenberg Based Analysis

Analysis for robotics, particularly robotic manipulators, is extremely tough, and

difficult. Therefore, many well-known scientists are striving to minimize the problems

and make them more adaptable for those who are interested in robotics science. The

four Denavit–Hartenberg parameters (DH parameters) are related to a specific standard

for attaching reference frames to the links of a spatial kinematic chain, or robot

manipulator. This convention was established in 1955 by Jacques Denavit and Richard

Hardenberg to standardize the coordinate frames for spatial links. In 1981, Richard Paul

demonstrated its utility in the kinematic analysis of robotic systems [15]. Even though

several conventions for attaching reference frames have been created, the Denavit–

Hardenberg convention is still a common way for engineers to simplify their analysis

and get closer to their solutions. DH principles parameters can help engineers do and

perform forward kinematics (FW), inverse kinematics (IK), Jacobian, and dynamics

analysis easily and concerning the tasks that are needed to be implemented.

2.1.1. Denavit-Hartenberg Axis

 In general, serial manipulators consist of several links, connected with some of the

common joints. Those joints might be revolute, or prismatic joints. To relate the end

effector of the manipulator with the fixed frame of the base of the manipulator we have

to use some mathematical calculations which we call position analysis [16]. The

scientists Denavit and Hardenberg come up with some principles to accurately solve this

problem and it is lying on link coordination and orientation. When describing a link, the

9

relative position of the two axes in space can be described by two parameters, link length,

and link twist. Two parameters may be used to define joints which are the offset length

is the separation between each link along the axis of the joint, and the rotation of one link

concerning the next about the joint axis is known as the joint angle [17].

The principle is based on geometric operations and dual vector algebra to process and

determine the relative transformation matrices, from which it is computed the Standard

Denavit- Hartenberg (DH) parameters (an, αn, dn, θn)[14].The axis and parameters (Figure

2.1) [13] [14]. The link axis and parameters will be clarified like the following:

• The Zn axis which is aligned with joint (n)

• The Xn-1 axis aligned along the common perpendicular of two joint axes of the link

n-1 points to joint n.

• The Yn axis is determined by the right-hand role cartesian coordinate system.

Figure 2.1: DH link parameters

However, the link parameters will be defined like the following and they will be filled

into the DH table to be used in HTM analysis[16].

• Parameter ai which is the offset distance between the origin of the n-1 frame to the

origin of n along the Xn axis direction.

• Parameter dn which is the translation distance between Xn-1 to Xn along the Zn-1 axis

direction.

• Parameter αn which is the twist angle between the Zn-1 axis to Zn around the positive

Xn axis.

10

• Parameter θn which is the joint angle and can be measured from Xn-1 to Xn around

Zn-1.

2.1.2. Homogeneous Transformation Matrices (HTM)

To apply DH principles to the frames of any kind of robotic arms, we have to follow

some sequencing steps frequently to come up with the exact result [18], and the steps

will be like the following.

Rotation around the Zn-1 axis, Rotz(n−1) (𝛩 n),see equation 2.1.

 𝑅𝑜𝑡𝑧(𝑛−1) (𝛩 𝑛) = (

𝐶(𝛩𝑛) − 𝑆(𝛩𝑛) 0 0

 𝑆(𝛩𝑛) 𝐶(𝛩𝑛) 0 0
0 0 1 0
0 0 0 1

) (2. 1)

Translation along Zn-1 axis, Transz(n−1) (dn),see equation 2.2.

 Transz(n−1) (dn) =(

1 0 0 0
0 1 0 0
0 0 1 d𝑛

0 0 0 1

)

(2. 2)

Translation along the Xn axis, Transx(n) (an),see equation 2.3.

 Transx(n) (an)=(

1 0 0 a𝑛

0 1 0 0
0 0 1 0
0 0 0 1

)

 (2. 3)

Rotation around the Xn axis, Rotx (n) (αn),see equation 2.4.

 Rotx (n) (αn) = (

1 0 0 0
0 C(αn) − S(αn) 0

0 S(αn) C(αn) 0
0 0 0 1

)

 (2. 4)

Regarding the steps that we applied to the DH axis and the matrices shown in equations

2.1 to 2.4 respectively, we could obtain the arm kinematic labeling in Figure 2.2.

11

Figure 2. 2 AIBOMECH Agrobot Arm Kinematic labeling

In addition to that, the DH convention table is abstracted too and it will consist of four

variables which we mentioned before, two variables are used for rotation, and two

variables for translation or displacement. The table number of Rows is equal to the

number of Frames – 1, the number of Columns = 4, two columns for rotation, and two

columns for translation [19].

 The set of parameters twist angle 𝒂n ,offset distance 𝐚𝒏 ,translation distance 𝐝𝒏,and joint

angle 𝜣𝒏 respectively will be presented in Table 2.1.This table notations are taken from

the representations explained in Figure 2.1 and every row is giving us four HTMs’ that

will be multiplied in sequence to give us general transformation matric to be used for the

specified axis, the kinematic representation for DH parameters can be converted to

another representation easily by following some constraints.

For example, there are other representations, such as the Screw theory, in which the axes

are modeled as normalized twists with the origin determined by a directional vector and

a linear velocity vector, they call it the Product of Exponentials (PoE) representation.

Recently, the use of the Universal Robot Description Format (URDF), an XML

(eXtensible Markup Language) file format to describe the kinematics and dynamics of

robots in a tree structure, has expanded as a result of the Robot Operating System (ROS)

where every robotic simulation platform in nowadays simulation might be implemented

in MATLAB, Gazebo, and CoppeliaSim in addition to ROS[20]. Therefore, we can

convert between these representations easily following the constraints specified by the

scientists who discovered them.

12

Table 2.1: Denavit-Hardenberg classical Convention Table

Link, n

an 𝑎n 𝑑n 𝛩n

 Joint rotation
limits (Degree)

1 a1 0 0 𝛩1

0-170

2 a2 −
π

2
 0 𝛩2

0-170

3 a3 −
π

2
 0 𝛩3

0-170

4 0 −
π

2
 𝑑4 0

4e1 0 0 𝑑4e1 𝛩4

0-170

4e2 a4e1 0 0 𝛩4

0-170

As a result of that, doing kinematics analysis in a sufficient way, can guarantee the

developers to implement those analysis in ROS to be performed with high productivity

and clever solutions for the industry and the nature.

2.1.3. Robot arm matrices formation and forward kinematics

We can easily create the HTM by vectorially multiplying the four matrices described in

equations 2.1 to 2.4 using the formulation Eq. 2.5 after creating the matrices for every

singular frame[16]. The matric that we obtain is shown in Eq.2.6 and it will be used as

general HTM for the axis to help us analyze and do computational calculations for the

robot arm.

The transformation matrix that enables transforming the position and orientation of one

joint to another is represented by the parameter 𝑇𝑛
𝑛−1 in Eq.2.6, and it can provide a

mathematical definition of it. HTM provides the general transformation relation for the

sixth joint of robot arm. It can relate and match the end-effector frame's transformation

matrix with respect to the inertial basis frame that fixed to the ground or mobile robot.

The first stage, which is illustrated in Eq.2.6, is to determine the position of the end-

effector as a function of joint angles following the creation of DH parameters[2], [21].

This is the result of the vector multiplication that we did in the previous stages and it will

be used for all axis of the robot arm.

13

𝑇𝑛

𝑛−1

= Rotz(n−1) (𝛩 n). Transz(n−1) (dn). Transx(n) (an). Rotx (n) (αn)
(2. 5)

 𝑇𝑛
𝑛−1 = (

𝐶(𝛩𝑛) − 𝐶(αn)𝑆(𝛩𝑛) 𝑆(αn)𝑆(𝛩𝑛) an𝐶(𝛩𝑛)

 𝑆(𝛩𝑛) 𝐶(αn)𝐶(𝛩𝑛) −𝑆(αn)𝐶(𝛩𝑛) an𝑆(𝛩𝑛)

0 𝑆(αn) 𝐶(αn) dn

0 0 0 1

)
(2. 6)

After obtaining the general formulation for transformation matric HTM for the

manipulator axis, we apply it to the frame starting from frame one, up to frame four [22]

as shown in Figure 2.2. Furthermore, the manipulator has two end effectors so that the

extension from frame 5 will have two orientations for two different grippers.

The manipulator base is fixed to the ground, and we suppose it to have an offset on the

Z axis, which we call it Offset, and the offset on the X axis, which we call the Offset as

shown in figure 2.2. In kinematic labeling, in total, it has four revolute joints, seven

transformation frames, and four links with one base link that is fixed to the ground with

two end effectors. The origin of every singular frame is defined with [O1], [O2], [O3],

[O4], [O4e1], and [O4e2] starting from revolute joint1, up to both grippers respectively.

The links of the manipulator are defined as {linkn },n=1,2,3,4. The axis Z, X, and Y are

represented as ⟨𝑍0⟩, ⟨𝑋0⟩, ⟨𝑌0⟩ for frame one,⟨𝑍1⟩, ⟨𝑋1⟩, ⟨𝑌1⟩ for frame two, ⟨𝑍2⟩, ⟨𝑋2⟩, ⟨𝑌2⟩

for frame three,⟨𝑍3⟩, ⟨𝑋3⟩, ⟨𝑌3⟩ for frame four, ⟨𝑍4⟩, ⟨𝑋4⟩, ⟨𝑌4⟩ for frame five,

⟨𝑍4𝑒1⟩, ⟨𝑋4𝑒1⟩, ⟨𝑌4𝑒1⟩ for the end effector one frame, ⟨𝑍4𝑒2⟩, ⟨𝑋4𝑒2⟩, ⟨𝑌4𝑒2⟩ for end effector

two frames. As shown in figure 2.2, table 2.1.

Frame 1 has a translation on the X axis, rotation around the Z axis, frame two has a

translation on the X axis, rotation around the Z axis, and rotation around the X axis, frame

three has a translation on the X axis, rotation around the Z axis, and rotation around the

X axis, frame four has translation along X axis and rotation around X axis too, frame five

has translation along the Z axis, rotation around an axis, frame six has translation along

an axis, rotation around the Z axis.

14

Table 2.2: HTM for link-1(frame 0)

Translation matrices Rotation matrices

Z

Axis
𝑁𝑜 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑙𝑜𝑛𝑔 𝑍 𝑎𝑥𝑖𝑠 𝑅𝑜𝑡𝑧(0)(𝛩1) = (

𝐶(𝛩1) − 𝑆(𝛩1) 0 0

 𝑆(𝛩1) 𝐶(𝛩1) 0 0
0 0 1 0
0 0 0 1

)

X

Axis
Transz(1)(d1)=(

1 0 0 a1

0 1 0 0
0 0 1 0
0 0 0 1

) No rotation around X-Axis

As shown in Table 2.2 the process done in the previous steps, we apply them to frame 0,

using Eq.2.5. By substituting n with 1, we obtain a general formulation like it shown in

Eq.2.7.

 𝑇1
0 = Rotz(0) (𝛩 1). Transz(0) (d1). Transx(1) (a1). Rotx (1) (α1)

 (2. 7)

After multiplying the matrices in Table 2.2, we arrive at the general form for HTM, which

is depicted in Eq. 2.6 for axis one and will later be utilized to produce the general matrices

that will readily match and precisely relate the end effector of the robot arm with the base

frame like it shown on Eq2.8.

 𝑇1
0 = (

𝐶(𝛩1) − 𝑆(𝛩1) 0 a1𝐶(𝛩1)

 𝑆(𝛩1) 𝐶(𝛩1) 0 a1𝑆(𝛩1)
0 0 1 0
0 0 0 1

)

 (2. 8)

As shown in Table 2.3 the process done in the previous steps, we apply them to frame

1, using Eq.2.5. By substituting n with 2, we obtain a general formulation like it shown

in Eq.2.9.

15

Table 2.3: HTM for link-2(frame-1)

Translation matrices Rotation matrices

Z

Axis
𝑵𝒐 𝒕𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒊𝒐𝒏 𝒂𝒍𝒐𝒏𝒈 𝒁 𝒂𝒙𝒊𝒔

𝑅𝑜𝑡𝑧(1)(𝛩2) = (

𝐶(𝛩2) − 𝑆(𝛩2) 0 0

 𝑆(𝛩2) 𝐶(𝛩2) 0 0
0 0 1 0
0 0 0 1

)

X

Axis
Transx(2)(a2)=(

1 0 0 𝑎2

0 1 0 0
0 0 1 0
0 0 0 1

) Rotx (2) (α2)=(

1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

)

 𝑇2
1 = Rotz(1) (𝛩 2). Transz(1) (d2). Transx(2) (a2). Rotx (2) (α2)

(2. 9)

After multiplying the matrices in Table 2.3, we come up with the general form for HTM,

which is depicted in Eq.2.9 for axis two and will later be utilized to produce the general

matrices that will readily match and precisely relate the end effector of the robot arm with

the base frame like it shown on Eq2.10.

 𝑇 =2
0 𝑇1

0 . 𝑇2
1 = (

𝐶(𝛩12) 0 −𝑆(𝛩12) a1𝐶(𝛩1) + a2𝐶(𝛩12)

𝑆(𝛩12) 0 𝐶(𝛩12) a1𝑆(𝛩1) + a2𝑆(𝛩12)
0 −1 0 0
0 0 0 1

)
 (2. 10)

As shown in Table:2.4 the process done in the previous steps, we apply them to frame 2,

using Eq.2.5. By substituting n with 3, we obtain a general formulation like it shown in

Eq.2.11.

Table 2.4: HTM for link-3(frame2)

Translation matrices
Rotation matrices

Z

Axis

𝑵𝒐 𝒕𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒊𝒐𝒏 𝒂𝒍𝒐𝒏𝒈 𝒁 𝒂𝒙𝒊𝒔
 𝑅𝑜𝑡𝑧(2)(𝛩3) = (

𝐶(𝛩3) − 𝑆(𝛩3) 0 0

 𝑆(𝛩3) 𝐶(𝛩3) 0 0
0 0 1 0
0 0 0 1

)

X

Axis

Transx(3)(a3)=(

1 0 0 𝑎3

0 1 0 0
0 0 1 0
0 0 0 1

)

Rotx (3) (α3)=(

1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

)

16

 𝑇3
2 = Rotz(2) (𝛩 3). Transz(2) (d3). Transx(3) (a3). Rotx (3) (α3)

 (2. 11)

We generate new parameters which are A1, A2, A3, A4, A5, and A6 that take expressions

into them to minimize the size of the matrix like it shown in equations group1.

After multiplying the matrices in Table 2.4, we come up with the general form for HTM,

which is depicted in Eq.2.11 for axis three and will later be utilized to produce the general

matrices that will readily match and precisely relate the end effector of the robot arm with

the base frame like it shown on Eq2.12.

A1=𝐶(𝛩3)𝐶(𝛩12)

A2=𝐶(𝛩3)𝑆(𝛩12)

A3=−𝑆(𝛩3)𝐶(𝛩12)

A4=−𝑆(𝛩3)𝑆(𝛩12)

A5= a1𝐶(𝛩1) + a2𝐶(𝛩12) + a3𝐶(𝛩3)𝐶(𝛩12)

A6= a1𝑆(𝛩1) + a2𝑆(𝛩12) + a3𝐶(𝛩3)𝑆(𝛩12)

 𝑇 = 𝑇2
0 . 𝑇3

2
3
0 = (

A1 𝑆(𝛩12) A3 A5

A2 −𝐶(𝛩12) A4 A6

−𝑆(𝛩3) 0 −𝐶(𝛩3) −a3𝑆(𝛩3)
0 0 0 1

)

 (2. 12)

As it is shown in Table:2.5 the process done in the previous steps, we apply them to frame

3, using Eq.2.5. By substituting n with 4, we obtain a general formulation like it shown

in Eq.2.13.

𝑇4

3 = Rotz(3) (𝛩 4). Transz(3) (d4). Transx(4) (a4). Rotx (4) (α4)
 (2. 13)

Table 2.5: HTM for link-3(frame3)

Translation matrices Rotation matrices

Z

Axis

Transx(3)(a4)=(

1 0 0 0
0 1 0 0
0 0 1 𝑑4

0 0 0 1

)

No rotation round z axis

X

Axis
No translation along X axis

Rotx (4) (α4) =(

1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

)

Equations

group 1

17

After multiplying the matrices in Table 2.5, we come up with the general form for HTM,

which is depicted in Eq.2.13 for axis four and will later be utilized to produce the general

matrices that will readily match and precisely relate the end effector of the robot arm with

the base frame like it shown on Eq2.14. We generate new parameters which are B1, B2,

B3, B4, B5, B6 and B7 that take expressions into them to minimize the size of the matrix

like it shown in equations group2.

B1=𝐶(𝛩3)𝐶(𝛩12)

B2=𝐶(𝛩3)𝑆(𝛩12)

B3=𝑆(𝛩3)𝐶(𝛩12)

B4=𝑆(𝛩3)𝑆(𝛩12)

B5=a1𝐶(𝛩1) + a2𝐶(𝛩12) + a3𝐶(𝛩3)𝐶(𝛩12) − d4𝑆(𝛩3)𝐶(𝛩12)

B6=a1𝑆(𝛩1) + a2𝑆(𝛩12) + a3𝐶(𝛩3)𝑆(𝛩12) − d4𝑆(𝛩3)𝑆(𝛩12)

B7=−a3𝑆(𝛩3) − 𝑑4𝐶(𝛩3)

Table 2.6:HTM for link-4 (frame4e1) (End effector-1)

Translation matrices Rotation matrices

Z

Axis

 Transz(4)(d4𝑒1)=(

1 0 0 0
0 1 0 0
0 0 1 𝑑4𝑒1

0 0 0 1

)

𝑅𝑜𝑡𝑧(4)(𝛩4) = (

𝐶(𝛩4) − 𝑆(𝛩4) 0 0

 𝑆(𝛩4) 𝐶(𝛩4) 0 0
0 0 1 0
0 0 0 1

)

X

Axis
No translation along the X axis No rotation around X axis

 𝑇 = 𝑇3
0 𝑇4

3
4
0 = (

B1 B3 𝑆(𝛩12) B5

B2 B4 −𝐶(𝛩12) B6

−𝑆(𝛩3) 𝐶(𝛩3) 0 B7
0 0 0 1

)

 (2. 14)

As shown in Table:2.6 the process done in the previous steps, we apply them to frame 4,

using Eq.2.5. By substituting n with 4e1, we obtain a general formulation like it shown in

Eq.2.15 which is the general formula for end effector 1.

𝑇4 𝑒1

4 = Rotz(4) (𝛩 4). Transz(4) (d4e1). Transx(4e1) (a4e1). Rotx (4e1) (α4e1)

 (2. 15)

After multiplying the matrices in Table 2.6, we come up with the general form for HTM,

which is depicted in Eq.2.15 for the axis 4e1 and will later be utilized to produce the

Equations

group 2

18

general matrices that will readily match and precisely relate the end effector 1 of the robot

arm with the base frame like it shown on Eq2.16. We generate new parameters which are

Q1, Q2, Q3, Q4, Q5, Q6 and Q7 that take expressions into them to minimize the size of the

matrix like it shown in equations group3.

Q1=𝐶(𝛩12)𝐶(𝛩34
)

Q2 = 𝐶(𝛩34)𝑆(𝛩12)

Q3=𝐶(𝛩12)𝑆(𝛩34)

Q4=𝑆(𝛩34)𝑆(𝛩12)

Q5=a1𝐶(𝛩1) + a2𝐶(𝛩12) + a3𝐶(𝛩3)𝐶(𝛩12) − d4𝑆(𝛩3)𝐶(𝛩12) + d4e1𝑆(𝛩12)

Q6=a1𝑆(𝛩1) + a2𝑆(𝛩12) + a3𝐶(𝛩3)𝑆(𝛩12) − d4𝑆(𝛩3)𝑆(𝛩12) − d4e1𝐶(𝛩12)

Q7=a3𝑆(𝛩3) − d4𝐶(𝛩3)

𝑇 = 𝑇4
0 𝑇4𝑒1

4
4𝑒1

0 = (

Q1 Q3 𝑆(𝛩12) Q5

Q2 Q4 −𝐶(𝛩12) Q6

−𝑆(𝛩34) 𝐶(𝛩34) 0 Q7

0 0 0 1

) (2. 16)

As seen in Eq. 2.16, we have 4X4 metrics that describe the forward kinematics and final

transformation metrics for the first end effector. The rotation part of this metric is

represented by the red shape with the R sample, and the translation part is represented by

the blue shape with the T sample. The fourth column in matrix 2.16 with first row in the

translation section represents translation in the X direction, the second row represents

translation in the Y direction, and the third row represents translation in the Z direction.

Table 2.7:HTM for for link-4 (frame4e2) (End effector-2)

Translation matrices Rotation matrices

Z

Axis
No translation along the Z axis

 𝑅𝑜𝑡𝑧(4)(𝛩5) = (

𝐶(𝛩4) − 𝑆(𝛩4) 0 0

 𝑆(𝛩4) 𝐶(𝛩4) 0 0
0 0 1 0
0 0 0 1

)

X

Axis
 Transx(3)(a4)=(

1 0 0 𝑎4𝑒2

0 1 0 0
0 0 1 0
0 0 0 1

) No rotation around the X axis

As shown in Table:2.7 the process done in the previous steps, we apply them to frame 4,

using Eq.2.5. By substituting n with 4e2, we obtain a general formulation like it shown in

Eq.2.17 which is the general formula for end effector 2.

T R

Equations

group 3

19

 𝑇4𝑒2
4 = Rotz(4) (𝛩 4). Transz(4) (d4e2). Transx(4e2) (a4e2). Rotx (4e2) (α4e2) (2. 17)

After multiplying the matrices in Table 2.7, we come up with the general form for HTM,

which is depicted in Eq.2.17 for axis 4e2 and will later be utilized to produce the general

matrices that will readily match and precisely relate the end effector 2 of the robot arm

with the base frame like it shown on Eq2.18.

We generate new parameters which are D1, D2, D3, D4, D5, D6 and D7 that take

expressions into them to minimize the size of the matrix like it shown in equations

group4.

As seen in Eq. 2.18, we have 4X4 metrics that describe the forward kinematics and final

transformation metrics for the second-end effector.

D1=𝐶(𝛩12)𝐶(𝛩34)

D2=𝑆(𝛩12)𝐶(𝛩34)

D3=𝐶(𝛩12)𝑆(𝛩34)

D4=𝑆(𝛩12)𝑆(𝛩34)

D5=a1𝐶(𝛩1) + a2𝐶(𝛩12) + a3𝐶(𝛩3)𝐶(𝛩12) + a4𝑒2𝐶(𝛩3)𝐶(𝛩12) − d4𝑆(𝛩3)𝐶(𝛩12)

D6=a1𝑆(𝛩1) + a2𝑆(𝛩12) + a3𝐶(𝛩3)𝑆(𝛩12) + a4𝑒2𝐶(𝛩3)𝑆(𝛩12) − d4𝑆(𝛩3)𝑆(𝛩12)

D7=−a3𝑆(𝛩3) − a4𝑒2𝑆(𝛩3) − d4𝐶(𝛩3)

The rotation part of this metric is represented by the red shape with the R sample, and

the translation part is represented by the blue shape with the T sample.

𝑇 = 𝑇4
0 𝑇4𝑒2

4
4𝑒2

0 = (

𝐷1 𝐷3 𝑆(𝛩12) 𝐷5

 𝐷2 𝐷4 −𝐶(𝛩12) 𝐷6

−𝑆(𝛩34) 𝐶(𝛩34) 1 𝐷7

0 0 0 1

) (2. 18)

The fourth column in matrix 2.18, first row in the translation section represents

translation in the X direction, the second row represents translation in the Y direction,

and the third row represents translation in the Z direction. All forward Kinematics has

been done using Python programming and it has been shown in Appendix A, part1,with

name of forward kinematics analysis.

T R

Equations

group 4

20

2.1.4. Robot arm inverse kinematics

Finding the joint values for the position (p) and orientation (o) that connect the robot

linkages is the goal of inverse kinematics. To perform inverse kinematics, θ1, θ2, θ3, and

θ4 of the robot arm for the specified inverse orientation R and inverse position P are

required. The AIBOMECH Agrobot is a two-gripper articulated arm that will be utilized

in the farming process. It is necessary to determine the joint values 1,2,3, and 4 for the

inverted position of an anthropomorphic/articulated arm[23].

For the first two joints of the robot arm, if we look from the top view, we will have two

revolute joints both of which are rotating on the same axis. By using the close form of

analytical method for kinematic analysis, we will get two equations for X and Y

directions respectively as shown in Eq.2.19, and Eq.2.20.

𝑋𝑝 = a1 𝐶(𝛩1)+a2 𝐶(𝛩12) (2. 19)

𝑌𝑝 = a1 𝑆(𝛩1)+a2 𝑆(𝛩12)

 (2. 20)

Figure 2. 3 AIBOMECH Agrobot Arm first two link labelling

𝛩12 = 𝛩1+ 𝛩2 which is the summation of joint angle one and joint angle two.

21

By squaring and sum of equations Eq.2.19 and Eq 2.20 for both sides, we end up with

Eq.2.21, and Eq.2.22 respectively.

𝐶2 =
(𝑋𝑝2+𝑌𝑝2−a1

2−a2
2)

2a1a2

 (2. 21)

𝑆2 = ±√1 − 𝐶22 (2. 22)

𝛽 = a2𝑆(𝛩2)

∀= ±√a1
2 − (a2𝑆𝜃2)2

𝜕 = Atan2 (
Y

X
)

𝛩1 = 𝜕 − Atan2 (
𝛽

∀
)

By using Eq2.21, Eq2.22, and Atan2 trigonometric rule, we can find the value of the

revolute joint two parametrically to allow us using it in obtaining the numeric values

for that joint to be use in programming to actuate the motors later. See equation 2.23.

𝛩2 = 𝐴𝑡𝑎𝑛2 (
𝑆2

𝐶2
) (2. 23)

For 𝛩1 , like it is shown in Figure 2.3, by using geometric analysis of the first two joints

we end up with group of equations shown in equation group2.

To find angle 3, and angle 4 of the manipulator, in our articulated mechanism, we

suppose that to find the general rotation matrix of the end effector we assumed the

rotation matrix of the end effector 2 concerning global frame. In this approach, there

are three ways to use for rotation matrix to be represented which are Euler angle

representation, roll-pitch-yaw representation and the axis/angle representation. In our

case ,we supposed to used roll-pitch-yaw , see Figure 2.4 [24].

Equations

group 5

22

Figure 2. 4 Roll, pitch, and yaw angles.

Therefore, the order of rotation will follow the Z-Y-X ordering as an approach, which is

roll, pitch, yaw which can represented as Rz,∅ , Ry,θ ,and Rx,γ respectively, like in the

following matrices.Equation 2.24 represents the rotation about Z-axis which is the roll

angle.

Rz,∅ = (
𝐶(∅) −𝑆(∅) 0
𝑆(∅) 𝐶(∅) 0

0 0 1

) (2. 24)

Equation 2.25 represents the rotation about Y-axis which is the yaw angle.

Ry,θ = (
𝐶(θ) 0 𝑆(θ)

0 1 0
−𝑆(θ) 0 𝐶(θ)

) (2. 25)

Equation 2.26 represents the rotation about X-axis which is the pitch angle.

Rx,γ = (
1 0 0
0 C(γ) −S(γ)

0 S(γ) C(γ)
) (2. 26)

The roll-pitch-yaw resultant of multiplication will be shown in equation 2.27, and

equation 2.28 respectively.

23

 RZYX= Rz,∅ Ry,θ Rx,γ
 (2. 27)

 RZYX = (

𝐶(∅)𝐶(θ) −𝑆(∅)𝐶(γ) + 𝐶(∅)𝑆(θ)𝑆(γ) 𝑆(∅)𝑆(γ) + 𝐶(∅)𝑆(θ)𝐶(γ)

𝑆(∅)𝐶(θ) 𝐶(∅)𝐶(γ) + 𝑆(∅)𝑆(θ)𝑆(γ) −𝐶(∅)𝑆(γ) + 𝑆(∅)𝑆(θ)𝐶(γ)

−𝑆(θ) 𝐶(θ)𝑆(γ) 𝐶(θ)𝐶(γ)
) (2. 28)

As it shown in Figure 2.2, for base frame and the end effector the orthogonality of the

axis, and by substituting the angles values in equation 2.28, we can end up with the

rotation matrix, see equation 2.29, that we will use in the following analysis. The equation

is representing the general rotation matrix between base frame and end effector 2.

Re20= (
0 0 1
0 1 0

−1 0 0
) (2. 29)

As we know from transformation matrices that to map any axis to another one, we have

to multiply the previous axis rotation matrix which is the rotation matrix between axis 2

and base frame of manipulator with the next one rotation matrix which is the matrix

between end effector 2 frame with frame 2. Therefore, the rotation matrix between end

effector 2 and base frame will be like it shown in equation 2.30.

Re20= R20*Re22 (2. 30)

Re22=Inverse (R20) * Re20 (2. 31)

To find the Re22, we multiplied both sides by the inverse matrix of (R20), see Eq31 so

that we end up with the Eq2.32.

Re22= (
0 𝑆(𝜃12) 𝐶(𝜃12)
1 0 0
0 𝐶(𝜃12) −𝑆(𝜃12)

)

 (2. 32)

On the other hand, we map axis 2 directly to the end effector 2 and obtain the result

shown in Eq2.28.

24

Re22= (

𝐶(𝜃3) ∗ 𝐶(𝜃4) −𝐶(𝜃3) ∗ 𝑆(𝜃4) −𝑆(𝜃3)

𝑆(𝜃3)𝐶(𝜃4) −𝑆(𝜃3)𝑆(𝜃4) 𝐶(𝜃3)

−𝑆(𝜃4) −𝐶(𝜃4) 0

)

 (2. 33)

By equating Eq2.32, Eq2.33, we obtain θ4 in equation 2.34 which we got it from

column 2, row 3 in equation 2.32, equation 2.33 respectively.

𝜃4=−cos−1 C(𝜃1 + 𝜃2)
 (2. 34)

And we obtain θ3 in equation 2.35 which we got it from column 3, row 1 in equation

2.32, equation 2.33 respectively

𝜃3= −sin−1 C(𝜃1 + 𝜃2)
 (2. 35)

By substituting values of 𝜃2, 𝑎𝑛𝑑 𝜃1 from Eq 2.23 and equations group5 respectively,

we could get the values of 𝜃4, 𝑎𝑛𝑑 𝜃3 like it shown in equation 2.34, and equation 2.35

respectively. So that we can use them in our inverse kinematics analysis. All inverse

Kinematics has been done using Python programming and it has been shown in

Appendix A, part2, with name of inverse kinematics analysis.

2.2. Jacobian analysis

Robotics' Jacobian matrix defines the relationship between the velocities of a robot

manipulator's joints (𝜽
.

)and end-effectors (𝑽)
.

. If the robot's joints move at a certain

speed, we might be interested in knowing how fast the end effector moves. Jacobian can

be of use to us here. It is the connection between kinematics analysis and dynamic

analysis that allows us to determine the inertia matrices, joint torque, and singularity of

the robot arms from Jacobian analysis and take those values into account while designing

the robotic arms' control algorithm.The calculations in this section are based on the

kinematic analysis we completed in Section 2.1, so first, we must use rotation matrices

and transformation matrices to characterize the differential kinematics of rigid bodies

(links of the robot arm).

25

The vector space covered by the joint variables is referred to as the joint space, and the

end-effector space is the vector space spanned by the end-effector location in the

transformation expression. The Jacobian matrix is the matrix that translates the joint rates

in the actuator space to the velocity state in the end-effector space for robot manipulators.

We applied the Eq2.6 that we used in the previous section to obtain the rotation matrix

for every singular joint of the robot arm.

The Jacobian matrix is an essential component in constructing trajectories with defined

geometry in the end-effector space for Jacobian computations and related work of needed

matrices. The bulk of industrial robot coordination algorithms avoids numerical inversion

of the Jacobian matrix by producing analytical inverse solutions on the spot[16].In

Eq2.36, we map the rotation of the joint of axis one to the joint of axis zero.

𝑅10 = (
𝐶(𝜃1) −𝑆(𝜃1) 0

𝑆(𝜃1) 𝐶(𝜃1) 0
0 0 1

)
 (2. 36)

In Eq2.37, we map the rotation of the joint of axis two to the joint of axis zero.

𝑅20 = (
𝐶(𝜃12) 0 −𝑆(𝜃12)

𝑆(𝜃12) 0 𝐶(𝜃12)
0 −1 0

)
 (2. 37)

In Eq2.38, we map the rotation of the joint of axis three to the joint of axis zero.

R30 = (

C(θ3)C(θ12) S(θ12) −S(θ3)C(θ12)

C(θ3)S(θ12) −C(θ12) −S(θ3)S(θ12)

−S(θ3) 0 −C(θ3)
)

(2. 38)

 In Eq2.39, we map the rotation of the joint of axis four to the joint of axis zero.

R40 = (

C(θ3)C(θ12) S(θ3)C(θ12) S(θ12)

C(θ3)S(θ12) S(θ3)S(θ12) −C(θ12)

−S(θ3) C(θ3) 0

)
 (2. 39)

 In Eq2.40, we map the rotation of the joint of the end effector to the joint of axis zero.

26

R4e20 = (

C(θ34)C(θ12) S(θ34)C(θ12) S(θ12)

C(θ34)S(θ12) S(θ34)S(θ12) −C(θ12)

−S(θ34) C(θ34) 0

)

 (2. 40)

2.2.1. Obtaining the direction and location of each joint axis

It is necessary to first know the position and orientation of each joint axis before

computing the Jacobian matrix. The general formulation that we will use to compute

the direction for every singular joint is shown in Eq2.41 so we will use the rotation

matrix to the specified joint concerning the global frame, and multiply it with the joint

axis direction.

Zi-1= 𝑅 ∗𝑖−1
0 (

0
0
1
)

 (2. 41)

After we use the Eq2.41we got Z0 like it shown in Eq2.42 and it will be used later to

compute the Jacobian of that joint.

Z0=(
0
0
1
)

 (2. 42)

After we use Eq2.41 and multiply the rotation matrix 𝑅1
0 in Eq2.36 we got Z1 like it

shown in Eq2.43 and it will be used later to compute the Jacobian of that joint.

Z1= 𝑅 ∗1
0 (

0
0
1
) = (

0
0
1
)

 (2. 43)

After we use Eq2.41 and multiply the rotation matrix 𝑅2
0 in Eq2.37 we got Z2 like it

shown in Eq2.44 and it will be used later to compute the Jacobian of that joint.

Z2= 𝑅 ∗2
0 (

0
0
1
) = (

−𝑆(𝜃12)

𝐶(𝜃12)
0

) (2. 44)

27

After we use Eq2.41 and multiply the rotation matrix 𝑅3
0 in Eq2.38 we got Z2 like it is

shown in Eq2.45 and it will be used later to compute the Jacobian of that joint.

Z3= 𝑅 ∗3
0 (

0
0
1
) = (

−𝑆(𝜃12)

𝐶(𝜃12)
0

)

 (2. 45)

After we use Eq2.41 and multiply the rotation matrix 𝑅4
0 in Eq2.39 we got Z3 like it

shown in Eq2.46 and it will be used later to compute the Jacobian of that joint.

Z4= 𝑅 ∗4
0 (

0
0
1
) = (

𝑆(𝜃12)

−𝐶(𝜃12)
0

)

 (2. 46)

After we use Eq2.41 and multiply the rotation matrix 𝑅4𝑒20 in Eq2.40 we got Z5 like

it is shown in Eq2.47 and it will be used later to compute the Jacobian of that joint.

Z5= 𝑅 ∗5
0 (

0
0
1
) = (

𝑆(𝜃12)

−𝐶(𝜃12)
0

)

 (2. 47)

After we obtained the position and orientation of all joints in previous calculations,

we can go one step further to obtain the Jacobian by the following process.

2.2.2 Obtaining the position vector of the end effector

concerning all frames

To obtain the Jacobian of every singular joint, the position vector of that joint is

necessary to be used in equation 2.48 and it can be accomplished like in the following.

The general formulation that will be followed is described in the following equations

which are representing the direction of the joints that we interested in.

𝑃 ∗𝑛
𝑖−1 = (𝑅)(𝑟) + 𝑃 ∗𝑛

𝑖
𝑖

𝑖−1
𝑖−1

0

 (2. 48)

Like it shown in equation 2.49, the general formulation for axis position is represented

to be multiplied with the rotation matrix of the axis with respect to base frame. The

28

process of obtaining the position vector of the joints of AIBOMECH Agrobot arm will

be carried like in the following equations.

𝑟𝑖
𝑖−1 = (

𝑎𝑖𝐶𝜃𝑖

𝑎𝑖𝑆𝜃𝑖

𝑑𝑖

)

 (2. 49)

Like it shown in equation 2.50, to obtain the position vector of the fourth axis, we

multiply the rotation matrix of the same axis with the position of that axis to get the final

result where it shown in equation 2.51.

𝑃 ∗4
3 = (𝑅)(𝑟)4

3
3
0

 (2. 50)

Like it shown in equation 2.52, to obtain the position vector of the third axis, we

multiply the rotation matrix of the same axis with the position of that axis to get the

final result where it shown in equation 2.53.

𝑃 ∗4
2 = (𝑅)(𝑟) + 𝑃 ∗4

3
3
2

2
0

 (2. 52)

𝑃 ∗4
2 = (

𝑎3𝐶𝜃3𝐶𝜃12 − 𝑑4𝑆𝜃12

𝑎3𝐶𝜃3𝑆𝜃12 + 𝑑4𝐶𝜃12

−𝑎3𝑆𝜃3

)

 (2. 53)

Like it shown in equation 2.54, to obtain the position vector of the second axis, we

multiply the rotation matrix of the same axis with the position of that axis to get the final

result where it shown in equation 2.55.

𝑃 ∗4
1 = (𝑅)(𝑟) + 𝑃 ∗4

2
2
1

1
0

 (2. 54)

P ∗4
3 = (

d4Sθ12

d4Cθ12

0

)

 (2. 51)

29

𝑃 ∗4
1 = (

a2𝐶𝜃12 + a3𝐶𝜃3𝐶𝜃12 − 𝑑4𝑆𝜃12

a2𝑆𝜃12 + a3𝑆𝜃12𝐶𝜃3 + 𝑑4𝐶𝜃12

−a3𝑆𝜃3

)

 (2. 55)

𝑃 ∗4
0 = 𝑃 ∗4

1 (2. 56)

𝑃 ∗4
0 = (

a2𝐶𝜃12 + a3𝐶𝜃3𝐶𝜃12 − 𝑑4𝑆𝜃12

a2𝑆𝜃12 + a3𝑆𝜃12𝐶𝜃3 + 𝑑4𝐶𝜃12

−a3𝑆𝜃3

)

 (2. 57)

Like it shown in equation 2.56, to obtain the position vector of the first axis, we multiply

the rotation matrix of the same axis with the position of that axis to get the final result

where it shown in equation 2.57.

2.2.3. Obtaining Jacobian matrices

As shown in equation 2.53, we can obtain the Jacobian matrices by cross product the

direction of the joints with the position vector of that joint concerning the base frame.

For first joint, the Jacobian obtained using the equation shown in 2.58 to end up with the

matrix shown in 2.59.

𝐽1= (
𝑧0 × 𝑃 ∗4

0

𝑧0
)

 (2. 58)

𝐽1=

(

−a2𝑆𝜃12 − a3𝑆𝜃12𝐶𝜃3 − 𝑑4𝐶𝜃12

a2𝐶𝜃12 + a3𝐶𝜃12𝐶𝜃3 − 𝑑4𝑆𝜃12

0
0
0
1)

 (2. 59)

30

For second joint, the Jacobian obtained using the equation shown in 2.60 to end up with

the matrix shown in 2.61.

𝐽2= (
𝑧1 × 𝑃 ∗4

1

𝑧1
)

 (2. 60)

𝐽2=

(

−a2𝑆𝜃12 − a3𝑆𝜃12𝐶𝜃3 − 𝑑4𝐶𝜃12

a2𝐶𝜃12 + a3𝐶𝜃12𝐶𝜃3 − 𝑑4𝑆𝜃12

0
0
0
1)

 (2. 61)

For third joint, the Jacobian obtained using the equation shown in 2.62 to end up with

the matrix shown in 2.63.

𝐽3= (
𝑧2 × 𝑃 ∗4

2

𝑧2
)

 (2. 62)

𝐽3=

(

−a3𝑆𝜃3𝐶𝜃12

−a3𝑆𝜃12𝑆𝜃3

−a3𝐶𝜃3

−𝑆𝜃12

𝐶𝜃12

0)

 (2. 63)

𝐽4= (
𝑧3 × 𝑃 ∗4

3

𝑧3
)

 (2. 64)

𝐽4=

(

0
0
0

−𝑆𝜃12

𝐶𝜃12

0)

 (2. 65)

31

E1=−a2𝑆𝜃12 − a3𝑆𝜃12𝐶𝜃3 − 𝑑4𝐶𝜃12

E2=a2𝐶𝜃12 + a3𝐶𝜃12𝐶𝜃3 − 𝑑4𝑆𝜃12

E3=−a2𝑆𝜃12 − a3𝑆𝜃12𝐶𝜃3 − 𝑑4𝐶𝜃12

E4=a2𝐶𝜃12 + a3𝐶𝜃12𝐶𝜃3 − 𝑑4𝑆𝜃12

For fourth joint, the Jacobian obtained using the equation shown in 2.64 to end up with

the matrix shown in 2.65.

For the general Jacobian of the AIBOMECH Agrobot manipulator and by applying the

sequence shown in equations group 6, we obtain the matrix shown in equation 2.66 so

that we can use it in theoretic calculations during programming and robot tasks

implementation.

𝐽 =

(

E1
E2
0
0
0
1

E3
E4
0
0
0
1

−a3𝑆𝜃3𝐶𝜃12

−a3𝑆𝜃12𝑆𝜃3

−a3𝐶𝜃3

−𝑆𝜃12

𝐶𝜃12

0

0
0
0

−𝑆𝜃12

𝐶𝜃12

0)

 (2. 66)

All Jacobian analysis has been done using Python programming and it has been shown

in Appendix A, part3, with name of Jacobian analysis

2.3. Three DoF Parallel robot manipulators with

gyroscope trajectory generation

Adding to serial kinematic chain, Parallel robots have usage in agricultural operation. A

parallel robot is a form of manipulator that differs from conventional robotic

manipulators in that it has three or more arm that operate concurrently rather than serially.

Parallel robots are highly suited for usage in agriculture because to their many benefits,

which include excellent precision, quick speed, and high payload capacities. Parallel

robots can be work as modular machines so that it can be integrated with mobile

platforms, with serial manipulators and perform several of complex tasks regarding to

Equations

group 6

32

the problem needs to be solved in real environment. Therefore, some of interesting

potential applications of parallel robot manipulators are like the following.

Harvesting: Crops including fruit, vegetables, and nuts can be accurately and effectively

harvested using parallel robots. For instance, a parallel robot could be employed to

delicately grip and gather fruit from trees or to harvest vegetables from field plants.

Planting and sowing: Parallel robots can be used to precisely sow seeds in greenhouse

environments or plant seedlings in fields. This may also serve to lessen the demand for

human labor while increasing the efficiency and precision of planting and sowing

processes.

Weeding: Weeds in fields can be located and eliminated utilizing parallel robots, either

by hand pulling or applying herbicides. This can increase crop yields and lower the

requirement for herbicides.

Fertilizing and irrigation: Parallel robots can be used to precisely and carefully apply

water and fertilizer to crops. This may assist reduce the need for fertilizers and water

while also improving the health and yields of crops.

In this section, we have used MPU6050 gyroscope to manipulate a 3 DoF freedom

parallel robot manipulator to be used in some of pick and place purposes. Parallel robots

are being used in a variety of applications as masterworks. These robots typically

outperform serial robots in terms of speed, strength, and accuracy. However, because

these robots have both parallel and serial singularities, their workspaces are both

significantly smaller and more complicated. Many strategies have been put out to expand

the workspace of parallel robots. One of these involves designing the robot's geometry

so that there are no parallel singularities [25].

2.3.1. Kinematic analysis and design

In kinematic analysis for this section, we have three arms which have three active

dependent joints with three servo actuators, and three passive joints that can move freely.

Those arms intersect in the middle with triagonal platform that has three passive joints

which allow the end effector moves freely in X-Y plane. We use SOLIDWORKS, see

33

figure 2.5 to design the robot links, holders and connections that will carry the actuators

and fix them to the base of the arm which is fixed to the ground.

After designing the manipulator parts, we manufactured them using 3D printing, see

figure 2.6. Then, we mount them together to with the bearings that help the platform to

be moved horizontally without any deflection.

Figure 2. 5 3DoF parallel robot manipulator CAD Design

In addition, we used Arduino Mega microcontroller to control the motion of the robot

with respect to the comments coming from Gyroscope and the calculation of inverse

kinematic of the robot manipulator.

Figure 2. 6 3DoF parallel robot manipulator 3D Printed parts

34

• Geometric inverse kinematic

Like it shown in figure 2.7, the compact shape of kinematic labelling of parallel robot

arm simplified and help us to carry out the kinematic calculation. However, it will have

that different nine working mode regions with different enclosed areas.

 In addition to that, like it shown in figure 2.8, and 2.9 respectively, the amount of joint

rotation will have two different solutions which are elbow up and elbow down, and we

can use them in our inverse kinematics calculations, these solutions can be computed

combining both geometrical and analytical that guide us to come up with pure solution.

Figure 2. 7 3DoF parallel manipulator kinematic labelling

𝜽𝒊 = 𝜷𝒊+ 𝜶𝒊 𝜽𝒊 = 𝜷𝒊− 𝜶𝒊
Figure 2. 8 Elbow down Figure 2. 9 Elbow up

Using Pythagorean theorem, we can obtain Eq2.62, and it can be used in the following

analysis.

a2 + ℎ2 = 𝐿2 (2. 67)

35

By using symmetric shape of the rectangular shape shown in Figure 2.7, Figure 2,8, we

make a perpendicular line to the middle of the line |a+a|. By square this length and

equalize it with the end effector X and Y position, we can get the equation 2.63.

 Also, we can get the equation 2.64 to find the value of a to use it in the coming analysis.

In addition to that, after dividing the triangle shown on figure 2.7 and 2.8 to two

symmetric rectangle, we can find the value of perpendicular hypothetical line h which

will be used in arc tangent role to find the value of hypothetical 𝜶𝒊 which is between the

link one and the line between end effector and origin, which will be used in inverse

kinematics analysis.

Finally, for entire shape shown inf figure 2.6, we can use Arc tangent role to obtain the

value of hypothetical 𝜷𝒊 angle which is between the X axis and the hypothetical line

between end effector and origin.

The amount of rotation of the actuator will be the algebraic summation of, and it will be

dependent if the ram is elbow up or elbow down like it shown on figure 2.7,2.8

respectively.

(𝐚 + 𝐚)𝟐 = 𝑷𝒙𝒊

𝟐 + 𝑷𝒚𝒊

𝟐 (2. 68)

𝐚 =
√𝑷𝒙𝒊

𝟐 + 𝑷𝒚𝒊

𝟐

𝟐

 (2. 69)

𝒉 = √𝑳𝟐 + a2 (2. 70)

𝜶𝒊 = 𝑨𝑻𝑨𝑵𝟐(𝒉, 𝐚) (2. 71)

𝜷𝒊 = 𝑨𝑻𝑨𝑵𝟐(𝑷𝒚𝒊
, 𝑷𝒙𝒊

) (2. 72)

𝜽𝒊 = 𝜷𝒊± 𝜶𝒊 (2. 73)

36

2.3.2. Working mode regions

Depending on the working dependencies of every singular manipulator, we end up with

nine working mode regions as a compact shape for all three manipulators. In between

those regions, we will have crossing singularities which can occur when the working

mode region goes from one to another. Those singularities are mixed between serial and

parallel singularities. Serial singularities are situations in which one or more degrees of

freedom are lost for the end-effector. The limitations of each operating mode are set forth

by these singularities. In parallel singularities, an end-effector is subjected to a force or

moment for which the actuators are unable to rotate or act.

Table 2.8:Three DoF Parallel Robot Manipulator working mode regions

1st manipulator 2nd manipulator 3rd manipulator

+ + +
+ + -
+ - +
+ - -
- + +
- + -
- - +
- - -

Since they are inside the workspace, these singularities make it smaller. They can also be

eliminated, but only from a specific working mode's workspace (a subspace). The

resulting workspace will be less than all of the working mode subspaces put together,

even if this subspace is devoid of singularities[25].

Using redundant actuators would be another approach to expand the workspace of a

parallel robot and lessen or perhaps eliminate parallel singularities. The cost of the robot

would drastically increase if motors and gearboxes were included. Table depicts the four

Robot functioning mode areas. Calculating the subregions corresponding to the serial and

parallel singularities reveals the boundaries of each working mode region, which each

covers a different area of the entire workspace. The robot must bridge a serial singularity

37

to transition from one working mode zone to another one. All necessary Arduino codes

for the parallel robot manipulator can be seen in Appendix C, part 1, with name of

codes for 3DoF parallel manipulator.

2.4. Serial Manipulator Kinetic Analysis

Robotics kinetic calculations assess and explain a robot's motion and external forces

using mathematical models and equations. This may involve computations in the fields

of dynamics and kinematics, which both deal with the forces acting on the robot and how

they affect its mobility. The robot's movement can be controlled, its behavior predicted,

and its stability and safety can be guaranteed using these calculations. Inverse kinematics,

forward kinematics, and motion planning are a few methods frequently utilized in

dynamic computations for robotics.

These analysis uses two different kinds of dynamic calculations which are forward

dynamics and inverse dynamics.

A technique called forward dynamics is used to calculate a robot's mobility and end

effector motion based on the forces and torques operating on it. On the hand, inverse

dynamics is utilized to ascertain the forces and torques necessary to cause a specific robot

motion so that we determine the torques and forces based on end effector given motion.

Both forward dynamics and inverse dynamics are crucial instruments for studying and

regulating robot motion. They are used in numerous different applications, including

trajectory planning, motion control, and collision avoidance [16].

In robotics, dynamic computations can be carried out in a variety of ways, including:

Lagrangian mechanics, Newton-Euler methods, Kane's method, Featherstone's

algorithm, Hybrid Dynamics. In my thesis calculations to do analysis for 4 DoF serial

robot manipulator, I used Lagrangian mechanics. It formulates the equation of motion

using a set of generalized coordinates, and it eliminates some of the forces of constraints

at the outset [16].

2.4.1. General form of dynamical equation

Depending on Lagrangian principle that aims to derive the governing the general

formulation of equation of motion, it could finalize this equation like it shown in 2.74.

38

 𝜏 = 𝑀𝜽̈ + 𝑽 + 𝑮 , 𝜏 = 𝑸 − 𝐽𝑇 𝐹𝑒 + 𝑓𝑟 (2. 74)

In equation 2.74, the first term is called the inertia forces, the second term is called the

Coriolis and centrifugal force, and the third term is representing the gravitational effects

forces. The steps that we followed in order to compute the dynamical calculations of our

AIBOMECH Agrobot manipulator will be summarized in the following session.

2.4.1.1. Inertia Matrix calculations (𝑴𝒎𝒂𝒕𝒓𝒊𝒙)

In this section, all materials and components that needed for calculating the first term of

dynamic equation, see equation 2.74.

𝑀(𝜃) = 𝐽𝑣1
𝑇 𝑚1𝐽𝑣1 + 𝐽𝑣2

𝑇 𝑚2𝐽𝑣2+𝐽𝑣3
𝑇 𝑚3𝐽𝑣3 + 𝐽𝑣4

𝑇 𝑚4𝐽𝑣4

+ 𝐽𝑤1
𝑇 𝐼1𝐽𝑤1 + 𝐽𝑤2

𝑇 𝐼1𝐽𝑤2 + 𝐽𝑤3
𝑇 𝐼3𝐽𝑤3 + 𝐽𝑤4

𝑇 𝐼4𝐽𝑤4

(2. 75)

When everything is ready, it may be swapped out in equation 2.74 to get the generic 4

by 4 matrices required for the calculations. 𝐽𝑣𝑖
𝑇 , 𝐽𝑣𝑖, 𝐽𝑤𝑖

𝑇 ,and 𝐽𝑤𝑖 are representing links

linear and angular velocity with their transpose.

• Links inertia matrices calculations

Inertia matrices are important to be used in the first term of 2.74 equation that we

mentioned before. Firstly, I obtained 𝑰𝒊
𝒊 matrices which is representing the inertia matrix

of link 𝒊 about its center of mass and expressed in the link frame 𝒊. To obtain this matrix,

I used the equation 2.75, assuming that the robot links have symmetric rectangular and

solid parts, 𝑚𝑖, 𝑎𝑖 are representing the link mass and length respectively. Then, we

compute 𝐼𝑖 matrix which will be used in all coming calculations that is going to be

the first term of general form of dynamic equation.

 𝐼𝑖
𝑖 =

1

12
𝑚𝑖𝑎𝑖

2 (
0 0 0
0 1 0
0 0 1

) , 𝐼𝑖 = 𝑅𝑖
0𝐼𝑖

𝑖(𝑅𝑖
0)𝑇 for 𝑖 =1, 2,….4

(2. 76)

In our AIBOMECH Agrobot manipulator dynamics calculations, I used Mathematica

software to do all computations needs. the results that obtained for 𝐼1
1 , 𝐼2

2 , 𝐼3
3 , 𝐼4

4

expressed in equations 2.76,2.77,2.78, and 2.79 respectively.

39

 𝐼1
1 =

(

0 0 0

0
𝑚1𝑎1

2

12
0

0 0
𝑚1𝑎1

2

12)

 (2. 77)

 𝐼2
2 = (

0 0 0

0
𝑚2𝑎2

2

12
0

0 0
𝑚2𝑎2

2

12

) (2. 78)

 𝐼3
3 = (

𝑚3𝑎3
2

12
0 0

0
𝑚3𝑎3

2

12
0

0 0 0

) (2. 79)

 𝐼4
4 = (

0 0 0

0
𝑚4𝑎4

2

12
0

0 0
𝑚4𝑎4

2

12

) (2. 80)

And the results that we obtained for 𝐼1, 𝐼2, 𝐼3 ,and 𝐼4 will be shown in Appendix B,

part1 with its required codes with name of Links Inertia Matrices Computation.

• Jacobian submatrices calculations

In this part the Jacobian that will be used in equation 2.75 will be obtained, and some

steps should be done before obtaining Jacobian. Firstly, the position vector of the

center of mass of the links with respect to the base frame has been computed, see

equation 2.81.

 𝑟𝑐𝑖

𝑖−1 =

(

𝑎𝑖𝐶𝜃𝑖

2
𝑎𝑖𝑆𝜃𝑖

2
𝑑𝑖

2)

 , 𝑃𝑐𝑖

𝑖−1 = 𝑅 𝑟𝑐𝑖

𝑖−1
𝑖

𝑖−1 + 𝑃 ∗𝑖−1
𝑖 (2. 81)

𝑖 representing the link number, 𝑟𝑐𝑖

𝑖−1 the distance between the link's center and the end

of the link that connects to the present link, 𝑃 ∗𝑖−1
𝑖 the position vector of the previous

40

link described on base frame of the manipulator, and 𝑃𝑐𝑖

𝑖−1 the position vector of the

position vector from the center of the link to previous one described on the base

frame.

 𝐽𝑣𝑖
𝑗

= {
𝑍𝑗−1 × 𝑃 ∗ , for revolute joint𝑐𝑖

𝑗−1

𝑍𝑗−1 , for prismatic joint
 }, 𝐽𝑤𝑖

𝑗
= {

𝑍𝑗−1, for revolute joint

0 , for prismatic joint
 } (2. 82)

As it shown in equation 2.82 𝐽𝑣𝑖
𝑗

 , 𝐽𝑤𝑖
𝑗

 are the partial rate of change of the velocity of

the center of mass and the angular velocity if the link 𝑖 and expressed in the base

frame. 𝑍𝑗−1represents the direction of the link descried on base frame. Equation 2.41 is

used to obtaining, 𝑍𝑗−1 .

 𝐽𝑣𝑖 = [𝐽𝑣𝑖
1 , 𝐽𝑣𝑖

2 , … , 𝐽𝑣𝑖
𝑖 0,0] , 𝐽𝑣𝑖 = [𝐽𝑤𝑖

1 , 𝐽𝑤𝑖
2 , … , 𝐽𝑤𝑖

𝑖 0,0] (2. 83)

As expressed in equation 2.83, the 𝐽𝑣𝑖, 𝐽𝑤𝑖 called the link Jacobian submatrices and,

obtained them using Mathematica, see Appendix B, part 2, with name of links Jacobian

computation.

 𝑀𝑖𝑗(𝜃) = (

𝑀11 𝑀12 𝑀13 𝑀14

 𝑀21 𝑀22 𝑀23 𝑀24

 𝑀31 𝑀32 𝑀33 𝑀34

𝑀41 𝑀42 𝑀43 𝑀44

) ,𝑖, 𝑗 for rows and columns (2. 84)

After preparing all Jacobians and links Inertia matrices (M matrix) which we done above,

and by using equation 2.75, we could end ep with 4 by 4 inertia matrix that shown in

equation 2.84. There will be 4 matrices for robots 4 links, and the general matric that will

be used in calculation will be the sum of them. The calculation of this part done in

Mathematica and the code for it is shown in Appendix B, part 3, with name of General

Mass inertia Matrix for Dynamic equation, first term.

2.4.1.2. Coriolis, Centrifugal force matrix calculations (𝑪𝒎𝒂𝒕𝒓𝒊𝒙)

In this section, I come up with new phenomenon known as the Coriolis force. This kind

of force generated in a reference frame that is rotating relative to an inertial frame. Also,

large-scale atmospheric and oceanic current rotation as well as the rotation of objects

within a rotating reference frame are caused by it. In addition to that, a "fictitious" force

41

known as the centrifugal force affects things traveling in a circular motion in a frame of

reference that is not inertial. These calculations can be challenging and often required for

a solid foundation in differential equations and vector calculus. Therefore, I renormalize

the equation 2.74 which was in matrix form to come up with the new equation, see

equation 2.85.I done first term in the first section, and in this section, I will compute the

second term in the following.

 ∑ 𝑚𝑘𝑗(𝜃)𝜃̈𝑗𝑗 + ∑ 𝑐𝑖𝑘𝑗(𝜃)𝜃̇𝑖𝑖,𝑗 𝜃̇𝑗 + 𝑔𝑘(𝜃) = 𝜏𝑘 , 𝑘 = 1 , …… , 𝑛 (2. 85)

In equation 2.85 𝑖 , 𝑗 , 𝑘 represent matrices rows, column, and the manipulator

joints, or degrees of freedom. In this study, 𝑖 = 4 , 𝑗 = 4 , and 𝑘=4.

If we look to the element 𝑐𝑖𝑘𝑗, it is similar to Christoffel Symbols of the First Kind, see

equation 2.86, which is frequently used in some of dynamical equations, and we are going

to use it to compute the second term of dynamic equation of motion.

 𝑐𝑖𝑗𝑘 =
1

2
{
𝜕𝑀𝑘𝑗

𝜕𝑞𝑖
+

𝜕𝑀𝑘𝑖

𝜕𝑞𝑗
−

𝜕𝑀𝑖𝑗

𝜕𝑞𝑘
} (2. 86)

𝑐𝑖𝑗𝑘
′ 𝑠 calculations are totally depended on 𝑖 , 𝑗 , 𝑘 factors . Therefore, the N elements

of it calculated using the equation (𝒄𝒊𝒋𝒌)𝑵
 = 𝟒𝟑=64 elements, because, we have

three factor which are 𝑖 , 𝑗 , 𝑘 ,and we have 4 cases of each of them at total.

Table 2.9: Christoffel Symbols 𝑐𝑖𝑗𝑘 values

Column-1

ROW1 C1R1 C111+C121+C131+C141

ROW2 C1R2 C112+C122+C132+C142

ROW3 C1R3 C113+C123+C133+C143

ROW4 C1R4 C114+C124+C134+C144

Column-2

ROW1 C2R1 C211+C221+C231+C241

ROW2 C2R2 C212+C222+C232+C242

ROW3 C2R3 C213+C223+C233+C243

ROW4 C2R4 C214+C224+C234+C244

Column-3

ROW1 C3R1 C311+C321+C331+C341

ROW2 C3R2 C312+C322+C332+C342

ROW3 C3R3 C313+C323+C333+C343

ROW4 C3R4 C314+C324+C234+C344

Column-4

ROW1 C4R1 C411+C421+C431+C441

ROW2 C4R2 C412+C422+C432+C442

ROW3 C4R3 C413+C423+C433+C443

ROW4 C4R4 C414+C424+C434+C444

42

All preparations required for the Christoffel Symbols of the First Kind are shown at

Appendix B, part 4 table ,with name of Christoffel Symbols of the First Kind.

We start with the 𝒊 factor, started from 1, but repeated 16 times, the, 𝒋 factor, started

from 1, but repeated 4 times, and the factor 𝑘, started from 1, but it doesn't repeat

in the same section as 𝒊 and j, as indicated in the appendix table. After simplifying

every potential value for 𝒄𝒊𝒋𝒌, we gather related elements to be in the desired

column. 4 columns in total will be produced, as shown in Table 2.9.

The approach for 𝑐𝑖𝑗𝑘 collection to be put in the suitable calculation and applied to their

columns is carried like it shown in equation 2.87, and for our case we simplify it like it

shown in table in Appendix B, part 4 table. 𝒊 is the number of columns, 𝒋 is the value

inside 𝐜𝒊𝒋𝒌 ,the element that is changed with respect to its position.

 𝐶𝑖 =

[

∑𝑐𝑖𝑗1𝑞̇𝑗

4

𝑗=1

∑𝑐𝑖𝑗2𝑞̇𝑗

4

𝑗=1

∑𝑐𝑖𝑗3𝑞̇𝑗

4

1

∑𝑐𝑖𝑗𝑛𝑞̇𝑗

4

1]

 (2. 87)

All calculations for this section were performed using Mathematica software, and the

necessary materials and codes for computing joint torque were computed using

Mathematic software as well. These results are displayed in Appendix B parts 5 through

7. Part 5 with name of Preparing M matrices that will be used to calculate 𝒄𝒊𝒋𝒌 elements

which is responsible for preparing Inertia matrix elements that will be used in the second

term of dynamic equation. Part 6, with name of Computing 𝒄𝒊𝒋𝒌 elements values which

will carry out the calculations to prepare Christoffel Symbols of the First Kind elements.

Part 7, with name of Computing Coriolis and Centrifugal 4 by 4 matrix which will carry

out the calculations to Coriolis and Centrifugal forces matrix.

43

2.4.2. Joints Torque Calculations and their Graphics

After calculating the inertia matrix, the Coriolis force matrix, and the Centrifugal force

matrix, we proceeded to calculate the final torques of the joints in order to get them ready

for the final graphs that we will use to decide which actuators to use in our project that

will be put into practice in real life. Appendix B Part 8, with name of Computing Torque

values for robot Joints which will carry out the calculation of final robot joints torques.

T1 = Simplify [𝑇𝑂𝑅𝑄𝑈𝐸𝑀𝐴𝑇𝑅𝐼𝑋 [[1, 1]]]

T2 = Simplify [𝑇𝑂𝑅𝑄𝑈𝐸𝑀𝐴𝑇𝑅𝐼𝑋 [[2, 1]]]

T3 = Simplify [𝑇𝑂𝑅𝑄𝑈𝐸𝑀𝐴𝑇𝑅𝐼𝑋 [[3, 1]]]

 T4 =Simplify [TORQUEMATRIX [[4, 1]]]

We derive the torques for the first, second, third, and fourth joints, as shown in

Equations group 7, and we store them in new variables called T1, T2, T3, and T4,

which stand for the torques for joints 1 through 4, respectively.

Figure 2. 10 First Joint Torque

Equations

group 7

44

Figure 2. 11 Second Joint Torque

Figure 2. 12 Third Joint Torque

Figure 2. 13 Fourth Joint Torque

45

Figure 2. 14 T1 , T2 , T3 ,and T4 combined plot

Appendix B Part 9, with name of drawing torque values graphs. This part aids the

robot designers in choosing actuators by illustrating the joint torques in a visual case to

make it easy to grasp what is happening in manipulator joints during robot works. The

figures 2.10 through 2.13 make it obvious that the largest torque is at joint 1, where it

is going up to 40 kg.cm. This makes sense because the first joint is carrying all of the

robot’s parts, so the maximum torque must be there. Torque 2 in figure 2.11 varies

between 0 and 20 kg.cm, which makes sense given that joint 2 is in the middle of the

system and its torque shouldn’t be that high or low. Due to the fact that joint 3 is curving

the other half of the manipulator, which is traveling in an area that must have a high

load of parts and grippers, the torque at joint 3 see figure 2.12 ranges from 0 to 30

kg.cm, which must be normal. The last joint, which is the fourth torque, see figure 13,

has a value, which ranges from 0 to 9 kg.cm since it is free to move and does not have

the weight necessary to support a high torque. Finally, to compare all joints torque in a

visualized and clear manner, we combine all of them in one plot, see figure 2.14.

2.5. Serial Manipulator Workspace Analysis

Over the past 50 years, there has been a lot of discussion about the reachable

workspaces of robotic manipulators. By sampling joint angles and assessing the set's

boundary in the space of rigid-body motions, one method of creating workspaces is to

sample joint angles, [19].Workspace analysis of a serial robot manipulator is securing

the evaluation of the accessible area and range of motion of the end-effector . Also, the

46

purpose of workspace analysis is to establish the robot's operational boundaries and

confirm that it is capable of carrying out the task for which it was designed.

The workspace of a serial manipulator can be obtained and depicted using a variety of

techniques, including forward and inverse kinematics, simulation, and visualization.

For the manipulator end-effector in our situation, there are two grippers, and each

gripper has a unique workspace. In figure 2.15, which shows the brown shape

represents gripper one and the purple shape represents gripper two, we used the

forward kinematics approach to extract and plot the 3D shape to estimate the workspace

of both grippers.

Figure 2. 15 Grippe-1, Gripper-2 Workspace Visualization

The forward analysis portion from section 2.1.3 is where the equations for this study

were taken from. Additionally, equations 2.16, and 2.18 have been applied,

respectively, for gripper 1 and gripper 2. We just used the fourth column of both

matrices in this case because it determines where the end effector will be located.

As, we see from figure 2.15, the gripper one has semi prolate shape workspace which

is a little bit longer than the second gripper. The reason for that is the wrist length which

is in perpendicular to gripper one, it is longer than the link which is connected to the

second gripper. Therefore, the workspace of the second gripper is closer to oblate shape

which mean that the reachability of the gripper is just limited to the places where it is

close to the bottom surfaces. We used Mathematic software to compute and plot the 3-

dimensional workspace for manipulator. All required material and codes can be found

in Appendix A part 4, under name of workspace analysis.

47

Chapter 3

3 Design and Implementing

In this section, the manipulator design, manufacturing using 3D printing, its parts

assembly, the actuators used to actuate the arm joint and their benefits, the arm

mechanism, and what are the purposes of its common shape will be presented in this

chapter.

3.1. Parts CAD design using SOLIDWORKS

As we mentioned in previous chapters, this robot is an articulated manipulator, and its 4

DoF and all joints are revolute joints. The mechanical design of the mechanism was

chosen following the conditions that the mechanism can be utilized on an experiment

table because it was created for testing reasons. Additionally, it was discovered that all

joints' limited rotation angles is relying on between 0 to 180[26].

Figure 3.1 depicts the CAD drawing of the created mechanism. There are some

mechanical restrictions on the joints of the mechanical construction. [26]. These

restrictions are provided to prevent robot manipulator damage while the motor rotates,

and they are taken into account when performing kinematics and Jacobian computations.

Due to the robot's intended application in agriculture, two grippers are made to be

multifunctional and perform numerous jobs with ease and efficiency.

 In our situation, we intended to use it during harvesting, so one gripper would hold the

basket that would gather the product and the other would chop the branch to which the

product was connected. It is simple to attach and detach the robot arm's base from the

mobile robot. In another case, one gripper can hold a camera that might follow the end

effector trajectory to be in contacting with the target and the other gripper could act on

the target place depending on the feedback and information coming from gripper one.

48

Figure 3. 1 manipulator mechanical design (CAD Design)

Adding to the previous features, instead of using prismatic joint to arrange the distance

in Z direction, we replace it with common configuration so that the manipulator end

effector could go through Z axis without facing any difficulties with wider workspace

and more reachability to the target.

3.1.1. Links design

The manipulator base, base link, link 1, link 2, link 3, link 4, and the grippers holder on

both sides are the linkages that we designed for the robot. When creating the connections,

we take into account the need to include slots for the connectors that will join the motors

so that the signal from the controllers can travel from motor 1 up to the end effectors.

Because we require the arm component integrated assembly to be symmetrical and as

straightforward as we intend it to be, we chose a circular shape for the connections.

Firstly, we design the base of the robot Figure 3.2, which will carry the entire robot body

and it will be the connection between the robot body and other bodies. The dimensions

of the base are 200x70x12 MM. The base can be fixed to the ground, to a mobile robot,

or to any other platform easily without facing any difficulties

49

Figure 3. 2 Robot arm base

The link that will be fixed to the base is called the base link Figure 3.3, and it will displace

the robot body on the z-axis and x-axis, and it is a compound of three different parts. The

distance for this displacement is 200 mm on the z-axis and 58 mm on the x-axis.

These parts are designed for prototyping and to be suitable for printing them out using

3D printing. The parts are designed to be familiar to the user as a real robot arm so that

we take beauty, industrial shape, and formality into consideration, like an already existing

robotic brand.

Figure 3. 3 robot arm base link

Link 1, link 2 Figure 3.4 of the robot arm has been designed to be identical in dimensions

because the workspace that we need in the XY plane is not strictly important in variation.

50

The length of the links is 45 mm. We opened a tunnel for the servo motor cables from

inside the links to keep the beauty of the robot high and allow the joints to move smoothly

without colliding with the cables.

Figure 3. 4 link1,2 of the robot arm

The wrist of the robot has been designed to implement the movement in the z-axis and it

is called link4 Figure 3.5 so it will replace the translation motion that the prismatic joint

done in the SCARA robot mechanism with rotary motion.

Figure 3. 5 robot arm wrist link

However, it will achieve the same goals. The dimensions of the link are 57x70 mm and

it contains tunnels for cables too.

51

3.1.2. Joints design

LX-16A servo motor has designed its connections for the motor. However, it is a little

bit expensive and limited for the purposes that the robot arm will be used so we designed

our connections. These connections will carry the servo motor that will actuate the joints

of the arm.

It has been designed to be suitable for the motor dimensions, holes, and edges so that it

can be assembled and disassembled easily. It can be used for different tasks too. The

backside connection Figure 3.4 is used to hold the servo motor from the backside and

attach it to the previous link.

Figure 3. 6 servo backside connection

The component on the front side of the motor must be attached to the motor's revolute

part and we called it the front connection Figure 3.5 so that it can be turned between 0

and 180 degrees, which is close enough for our desired workspace of the joints' work.

Figure 3. 7 servo frontside connection

52

When designing the joints, we consider the dimensions of the motor sides, cables, and

screws that will hold these components together to simplify the assembly and

disassembly of the robot when it is necessary.

3.1.3. Gripper’s design

Our robot has two grippers Figure 3.8 that will be used for farming and agricultural

purposes, each of which has a single prismatic joint that allows it to be retained or

released from the target while in operation. The two grippers will cooperate since they

are perpendicular to one another. The first gripper is parallel to the fourth servo motor

joint and the second gripper is coincident with it.

We were able to determine from this setup that the precision of the work can be ensured

since even if the first gripper makes a tiny error, the second gripper may be able to

minimize it and complete the operation as planned. On the first gripper, we will put the

fertilizing machine that will be responsible for actuating the fertilizer to the plants that

need it.

In this case, the pump will be triggered using a magnetic relay so that when the robot

comes to the plant that needs to take fertilizer depending on the data that will be taken

from the image using the camera and the required image processing and supply the

required fertilizer to the plant that will help it to grow and kill the weeds and insects.

On the other hand, the other gripper will be responsible for harvesting the ready

vegetables and fruits that are ready and put them in the basket installed on the mobile

robot, and bringing them to the collection place. Any tube can be used for gripper one to

transport liquid from the central unit to the robot arm's end effector so that it can respond

to the actuator where it is positioned as soon as possible. The load on the robot arm will

be reduced from this side, allowing it to operate with actuators that can handle a light

load. On the other hand, gripper 2 can be easily replaced depending on the task for which

it will be employed. For instance, we need to employ a little larger gripper if the robot is

going to gather heavy, hard fruits like apples so that it can complete the task without any

issues.

53

Figure 3. 8 end effector grippers

However, if it is going to be used for harvesting small fruits like strawberries, the gripper

for this task should be designed as smoothly as possible so that it can carry out the work

with no effect on the strawberry to be squeezed.

3.2. Actuator’s selection (LX-16A Servo motor)

Servo motors are used in a very wide range of robotics applications, in control systems

for quick operation, excessive axis movement, condition control, and other uses. Servo

motors are utilized in conjunction with electronic or programmable circuits because of

their high sensitivity.

There are two types of these motors which are AC and DC. The servo motors are brushed

while the AC servo motors are brushless type motors. Most servo motors have three

cables and everyone is for a different purpose. These are yellow for signal, black for

ground, and red for voltage[27].In this project, we have selected an LX-16A servo motor

as shown in Figure 3.1.

These servo motors were created and produced by the HIWONDER company. They were

intended for robotic arm prototyping and were utilized in their unique pick-and-place

robotic arm. It is a full metal gear serial bus servo with 17kg of strong torque. It has

feedback on temperature and position too.

54

It uses LX-16A Bus Servo uses as a serial protocol, thus to control it, we must use our

TTL/USB debug board is compatible with Arduino microcontroller[28].

Figure 3. 9 LX-16A Servo motor

Debugging board is designed separately by the company and it has to be used for

calibration and control. No matter how many servos you are controlling, you only need

one debug board Figure 3.3. The main function of the motor is simply depending on the

setup that we have done before the system operation. Each servo can specify an ID

number for identification.

The servo ID can be changed by the user. The controller and servo interact with each

other via a single bus at a baud rate of 115200. Each servo can have an ID number

assigned by the user, and the controller's command includes this information. Only the

servos that match the ID number can receive this command and act by doing as instructed.

3.3. Servo controllers and drivers’ selection

3.3.1. Bus servo terminal

While setting up the system and motors that will actuate the robot joints, we should use

debugging board Figure 3.3 so that we can set the ID for every singular servo motor. We

can instantly connect to the computer with the USB cable when the debug board is

attached to the power source. The PC software can allow us to test the servo and configure

its settings by connecting it to the TX and RX of a single chip, we can control a servo

and read its angle using a debug board. Positive, negative, and signal wires are the three

wires on the LX-16A servo, respectively.

55

Figure 3. 10 LX-16A Servo debug board

Data can be sent and received simultaneously over this signal link. It's a little complex If

we want to control the bus servo using a single chip. Therefore, the company of Hiwonder

provides users with the BusLinker debug board, which can change the servo's serial port

into a two-wire serial port. At the same time, we can set all the IDs of the servos that we

will use in our system.

3.3.2. Bus servo controller

The bus servo controller Figure 3.4 is required to generate the point sets, either manually

or by logging the angles of the joints of the robotic arm's initial and final position from

the user interface designed by the Hiwonder company.

 The motor can take values from 0 up to 1000 in servo modes, and it can be configured

as DC motor mode as well. Hiwonder's intelligent serial bus servo controller can be

combined with a PS2 wireless handle to realize servo remote control when utilized for

serial servo control. It enables TTL serial port connectivity, manual programming, and

online debugging. A comprehensive system may be fully and simultaneously set to

function in complicated systems and in communication with ROS, which we are

employing in our project, as well as with extremely popular programming languages like

C++, Python, and MATLAB. These boards were chosen because they are simple to

control, integrate, and/or communicate with other microcontrollers or computers.

56

Figure 3. 11 Bus Servo Controller

Additionally, it is not necessary to wire every motor separately to the controllers; instead,

setting their IDs is sufficient to send their designated signal to the precise positions where

it is needed to command the motors to move. In addition, we use Rosserial protocol to

enable the serial connection of the servo system of our robot arm for the LX-16A servo

motor and the extra hardware elements such as the Arduino microcontroller to the ROS

system.

Figure 3. 12 .Connection Diagram of servo entire system

Through the use of serial libraries, the type of activity (Subscriber/ Publisher or

Service) and a message format are directly established on the device. Additionally, a

Python node on the host computer relays messages and makes ROS aware of any nodes

generated on the device. Devices can have any functionality as long as they

communicate utilizing the serial connection and the Rosserial format [29], see Figure

3.12.

57

Chapter 4

4 Controlling and Software

Every industrial robot has software installed, and they all depend heavily on it to function.

In order to imitate robot work, virtual simulation is also necessary. Robotic arms have

multiple degrees of freedom and can extend to increase accuracy and repeatability. The

HMI interface, which must be given by the manufacturer or a third party in

communication with the manufacturer, is also necessary to familiarize us with the robot

when it is in operation. But the market needs a more dependable answer, one that gives

the robot total autonomy and adds sensors for feedback.

To create a functional control system, the use of middleware packages and programs

must be taken into consideration so that we can call the software environment between

apps that interact with one another to carry out repetitive and accurate operations as a

middleware. They never take any independent activity regarding to the tasks given to it.

To select the suitable middleware for your system, you have to know all that system

characteristics and specifications to decide which middleware you can use[30].

There has been research on middleware selection, and the pros and cons of each

middleware package have been listed to help explain the decision. Typically, a certain

operating system is required to execute and interact with robot middleware. It can be a

virtual platform that controls the hardware and robot frameworks attached to the

computer running the operating system. These operational systems might be Windows,

macOS, and Linux or any other system that can run and manage the robot operations.

4.1. Robotic Operating System (ROS)

Being able to work with real robots is always a fantasy for robotics enthusiasts. These

platforms were often quite expensive, and complicated, limited resources are available,

and only large companies or research institutions could afford them. Additionally, it may

be difficult to get a job in this field given its continued rapid growth and requirement-

58

intensive experience [31]. A meta platform, Robot Operating System (ROS) makes

robotics programming easier and more reachable for developers. One of the goals of this

thesis is to show how ROS may be used to create robot manipulator software by analyzing

and computing the kinematics of robot issues, looking at existing packages, and creating

a ROS-powered prototype arm[32].

 ROS was created and developed as a specific software and framework unit for robotic

platforms to be easily integrated with each other. In essence, many robotic tools offer

message transport methods between various software nodes and hardware simulation.

Nodes are separate modules that can function on their own and/or in communication with

other system.

They communicate on the aforementioned topics utilizing the TCP/IP protocol and a one-

to-many subscriber paradigm. When working with networked systems, this ROS

capability is crucial and extremely important to robotic system.

For instance, the functionality needed for only one robot operation, specifically the parts

for the sensor and actuator controls, can significantly rise and strictly important for the

robot operations. A few of the applications that can be achieved with this distributed

sensor network are motion planning, trajectory planning, collision detection, mapping,

navigation, and obstacle avoidance.

Each system has a name, they call it as a server, also known as a ROS-Master, that

notifies nodes of which node is publishing to which topic that we are interested in. As a

result, every node needs to save the issues it sends to the ROS-Master. Another node that

wants to subscribe to a topic asks ROS-Master for the contact information of pertinent

publications and gets in touch with them. As in a peer-to-peer network, the nodes link

directly after the initial phase of searching and start operate on it.

Robot arm path navigating and planning is one of the heavily researched areas in a

robotics automation system, which deals with planning and moving toward the goal of

avoiding obstacles surrounding the environment, Using the MOVEIT system in the ROS

platform, path planning, and robot kinematics integration is the main focus of this study.

For complete autonomy, ROS provides a variety of nodes and packages to build the

system's functionality. Taking advantage of this, we intend to assess the ROS path

59

planning system for our objective, which is picking and placing crops for harvesting

purposes in agriculture tasks[33].

Most of ROS's code is written in C++ and Python languages. Therefore, Client libraries

for C++, Python, Java, and/or MATLAB are among the languages supported by ROS

nodes. For communication between message delivery systems and protocols, any

programming language is acceptable for ROS-Master. Additionally, other operating

systems only partially support the ROS operating system, which is primarily supported

by Ubuntu/Linux. However, ROS's modular design makes it simple to develop a variety

of setups for varied scenarios.

The thesis study's codes underwent testing on both a real system and a simulation. The

URDF file, image processing code, and MOVEIT module must be modified in

accordance with the robot's mechanical, motion, and sensor model in order for these

experiments to be performed on additional ROS-enabled robots.

To deal with any robotic manipulator using the ROS platform, there are a few procedures

that must be taken to achieve the goals that robotics engineers and researchers are

planning to achieve. Those steps are going to be discussed in this chapter and it will be

like the following[34].

• Preparing the system environment and operating system

• Preparing the robot's physical appearance and configuration

• Preparing the script, packages, and codes that will run the system.

• Nodes

• Topics

• Actions

• Combine them

4.2. Preparing ROS Environment and its operating

system

A robotic operating system (ROS) is a versatile and open-source software framework.

Developers can create robotics apps using ROS' hardware abstraction layer without

having to worry about the underlying hardware. In addition, ROS offers a variety of

60

software tools for analyzing and debugging robot data. The message-passing middleware

at the heart of the ROS framework enables processes to talk to one another and exchange

information even when they are running on different machines. Both synchronous and

asynchronous message forwarding is possible with ROS [35].

4.2.1. Ubuntu 18.04 installation neither in virtual Box nor in

dual bot

It is an open-source Linux distribution built on the Debian operating system. Ubuntu,

which is supported by Canonical Ltd., is regarded as a decent distribution for novices.

Although it may be used on servers, the operating system was designed primarily for

personal computers (PCs). The word "ubuntu," which means "humanity to others," is

derived from the African Zulu language[36]. Therefore, to download and install Ubuntu

(Figure 3.1), we have to follow some steps as follows[37]:

Figure 4. 1: Ubuntu operating system

• Preparing the PC’ DVD and USB, at least 25 GB must be free space

• Boot from DVD, or USB flash drive (Figure 3.2).

• Preparing for installation and allocating drive space (Figure 3.3).

• Following the steps that Ubuntu suggests user do the required settings

(Figure 3.4)

• Start Ubuntu system testing

61

Figure 4. 2: Ubuntu Booting and Ubuntu system allocating

Figure 4. 3: Ubuntu system settings and preparation

These steps are must for installing Ubuntu and working with robotic operating systems

(ROS).

4.2.2. ROS Melodic installation

Robot Operating System (ROS) is A collection of software libraries and development

tools that are used to create robotic devices and programs. Melodic Morenia is the most

recent long-term service version of ROS. It only works with Ubuntu 18.04 Bionic Beaver

when using ROS Melodic[38].To install and work with this tool, we should follow the

steps below[35] :

• Open a terminal and update the Ubuntu system using the command

$ sudo apt-get update

• Install ROS full melodic package using command

$ sudo apt-get install ros-melodic-desktop-full

• Initializing ROS dep using commands bellow

$ sudo rosdep init

$ rosdep update

62

• Setting up the ROS environment where the user will work, writing the

following command into the terminal and copying the next one inside the file

that will be opened .

.bashrc

source /opt/ros/melodic/setup.bash

4.2.3. Setting and preparing ROS workspace (Catkin_ws)

A catkin workspace is a directory (folder) where you can build new catkin packages or

edit ones that already exist. The catkin structure streamlines the creation and setup of

your ROS packages[39].To achieve this milestone, we should follow the next steps[35] .

• Open the terminal and create an empty workspace folder and open another file

inside called src, using the following command.

$ mkdir -p catkin_ws/src

• Switch to src and initialize the workspace using the command bellow

catkin_init_workspace

• Switch to catkin_ws itself and build the packages inside it using the following

command.

$ catkin_make

4.2.4. Setting and preparing ROS packages

A ROS package could include any item that logically belongs in a useful module,

including a library, a dataset, configuration files, etc. These packages' main objective is

to make the functionality accessible to users so that software can be reused with

ease[40].To create ROS packages, we have to follow the coming steps[41].

• Open the terminal and go to catkin_ws/src folder using the command bellow

$ cd ~/catkin_ws/src

• Create the folder that will contain the project/package name and its required

dependencies using the following command

$ catkin_create_pkg progect_name std_msgs rospy roscpp

• Switch to the folder of catkin_ws and build the package using the next command

$ cd ~/catkin_ws

$ catkin_make

63

The project package will be ready once all of these processes have been completed, and

we can then add any further scripts or information that will be required for the project's

implementation.

4.3. Preparing the physical characteristics of the robot

In simulation space, it is necessary to have a physical characteristic for the robot and the

URDF (universal robot description file) is a package used as a parser for the robot

description file structure in XML file, it was created and used as part of that structure.

There is a tree structure in the robot definition file. There can only be one primary link

in the system named after the tree structure, to which a link is attached, forming a chain.

 All of the infrastructures that make up the robot are defined in the file structure for the

robot definition. The robot arm kinematic Model has to be equivalent to the real robot.

Therefore, the robot model in ROS contains crucial packages and some important nodes

that aid in creating the 3D robot models in the virtual frame. These packages employ the

Unified Robot Description Format (URDF). So, the manipulator model is described in

the URDF, which is an XML specification.

To perform robot work, we have to prepare the inertia matrix, collision detection matrix,

robot joints and arms visualization, the transmission of joints actuators, reduction rate,

actuators that will be used, gazebo plugin, sensor plugin, and required controllers that we

may use during task implementation.

4.3.1. SOLIDWORK to URDF preparation

In this section, we have prepared the manipulator parts to be appropriate for prototyping

and printing after being converted from CAD to extension STL. The components are

made to look like genuine robot arms to users so that we may address aesthetics,

industrial design, and formality, just like an established robotics company. Using the

SOLIDWORKS CAD application, a 4-DOF manipulator with 2 distinct end effectors

was developed to harvest and manipulate the objects.

Then, we installed the Unified Robotics Description Format (URDF) as a CAD plugin

using SOLIDWORKS. Thanks to the SW2URDF plugin for making it simple to convert

the design to ROS and begin controlling it. This plugin assists in converting CAD-

64

designed robots into a format that ROS can read and show on RVIZ and Gazebo in

integration with MOVEIT.

To carry out all these processes, we can follow the following procedure.

firstly, top bar menu in SOLIDWORKS, we can click the tools manager and select the

export as URDF plugin, see Figure 4.4.

Figure 4. 4: URDF exporter selection

When we press export as URDF, the URDF setup exporter will pop up to show us the

space where we will set the values and parameters of the manipulator properties and

names, see Figure 4.5.

Figure 4. 5: URDF Axes and joints naming

However, the plane of the links and joints must be in top side of view of SOLIDWORKS

during design, see Figure 4.6, otherwise, there will be a confliction after launching the

file in ROS workspace. Therefore, each connection will need to be manually configured,

65

and the tree will need to be built. Each connection must have a distinct name, a distinct

joint name, and it can be done by selection of that links and joints one by one, and the

necessary number of child’s and parents

Figure 4. 6: SOLIDWORKS parts plane selection

In SOLIDWORKS, to avoid the errors and mistakes that may face us in ROS, we have

to add the references coordinate systems to the links too, see Figure 4.7. Additionally,

you can expressly state which joint type and for each joint belongs to.

Figure 4. 7: Placing axes on SOLIDWORKS design

We can adjust the joints properties, such joint name, joint type to be prismatic or revolute

or continuous, and link name, see Figure 4.8.

66

Figure 4. 8: defining the robot parameters

To decide the amount of rotation if it is revolute joint, and the limit of translation if it is

prismatic joint. In addition to that, to decide the joint speed and acceleration. We can

modify the link properties of any connection in our design. The mass, the moment of

inertia, the origins of various sections, the texture, the color, and other characteristics can

all be changed, see Figure 4.9.

Figure 4. 9: Setting up robot links properties

We can change the reference coordinate systems and axes after exporting the files to

URDF version to match our needs.

67

Figure 4. 10: Saved version of URDF file

The axes and coordinate systems can then be changed inside URDF files. After preparing

all settings and configuration, we can select "File"> "Export to URDF" from the menu

bar, see figure to start the export procedure and save the file with the name that we want,

see Figure 4.10.

4.3.2. AIBOMECH Agrobot packages preparation

The bundle for the articulated AIBOMECH Agrobot includes every folder needed to run

the robot application and carry out the tasks we have in mind. It has five folders which

are configuration, launch, meshes, script, and URDF.

The physicality of the robot components is handled by the URDF package, while the

system's operation and package management are handled by the launch file. The

configuration file is in charge of directing and facilitating communication between nodes.

Meshes are in charge of the robot's STL 3D components. The Python code we built to

compute, perform, and carry out the actions we intend to do is contained in the script file.

In order to create these packages and make them executable, we have to follow the next

procedure, with writing the required commands.

Firstly, we open the terminal in Linux operating system and go to the catkin_ws/src

directory by writing the following command.

$ cd catkin_ws/src/

68

Then, we have to create the package with its required extensions, by writing the following

command.

$ catkin_create_pkg aibomech_agrobot std_msgs rospy roscpp

Then ,by going back to catkin_ws by writing the following command .

$ cd ..

After that, we can execute and build the package that we name it by writing the following

command.

$ catkin_make

After we create the package inside catkin_ws, there will be two files which will be

responsible for files management and the communication and control between packages.

Those extensions are CMakeLists.txt, and package.xml.

We have to go to the directory where we will create the packages files by writing the

following command.

$ cd catkin_ws/src/

To create URDF folder writing command

$ cd mkdir urdf

To create launch folder writing command

$ cd mkdir launch

To create config folder writing command

$ cd mkdir config

by going to inside every folder and and creating the files that we will write the codes

inside it by writing the following command.

$ touch TextName.txt

69

Inside all these files and folders, we will have Gazebo, RVIZ, MOVEIT, and other

control files which will be necessary to run the system.

4.3.3. AIBOMECH Agrobot MOVEIT package preparation

In this package, we will prepare the package of MOVEIT that will be responsible to

manage and execute the path of robot arm. It can provide the required files for the robot

to do the motion that we are planning to do, to integrate with the inverse kinematics that

we done before, and to do path planning[14]. The MOVEIT has been designed by

developers to simplify the methodology of robot arm controlling. In this case we have

used the MOVEIT setup helper tool. We used the robot definition file in the URDF

format that has been generated from SOLIDWORKS. Before beginning the setup,

roscore must be started by writing the following command.

$ roscore

After running the roscore from terminal, we can open another terminal to execute the

MOVEIT setup assistance by writing the following command.

$ roslaunch moveit_setup_assistant setup_assistant.launch

A new window will be opened with name Moveit! setup assistance, see Figure4.11.

Then, we can start load the model of our robot by clicking on the icon called create new

Moveit configuration package, another window will open to us.

Figure 4. 11: Moveit! Setup Assistant

70

From the window, see Figure 4.12. We can select the files of URDF that we prepared

before. Then, we can click the button of load file at the same windows, to parse the

URDF, and the robot will be appeared at the right side of the window.

Figure 4. 12: Moveit! Setup files loading

After parsing the files that we load from the packages, we can start working on our

robot arm preparation and installation to be ready for tasks that we need to achieve.

Firstly, we can start from self-collision matrix generation so that the joints and links can

be linked together to be ready for manipulation, see Figure 4.13.

Figure 4. 13: Self-collision matrix generation

The second step is to generate and prepare planning groups that will help us to shape

and compute the trajectories that we are going to achieve, by clicking on button called

Planning Groups, see Figure 4.14.

71

Figure 4. 14: Moveit planning groups

From define planning groups, we can create new planning groups using kinematic

convention, we name the group with robotic arm, and choose

kdl_kinematics_plugin/KDLKinematicsPlugin with RRTstar and click on Add Joints

button to generate that group, see Figure 4.15, Figure 4.16.

Figure 4. 15: Planning Groups setting

72

Figure 4. 16: Planning Groups setting

The third step is to prepare the poses and the tasks that the robot will do by clicking the

robot poses button on the left side of the opened window, see Figure 4.17.

Figure 4. 17: Robot Poses preparing

From the poses window, we can select the pose name with target1 and pick up the group

that we prepared before from the planning group section. Then, we manipulate the joints

of the arm regarding to the tasks that we need to do, see Figure 4.18.

73

Figure 4. 18: target1 task preparation

For the target2(Task 2), we select arm1 group which we prepared it in groups section so

that we can displace the joints position and orientation from the bar menu shown in the

right side of robot poses, see Figure 4.19.

Figure 4. 19: target2 task preparation

In addition to the previous steps, ROS control must be added and prepared to the

MOVEIT package by clicking on ROS Control button, and click on Auto Add Follow

Joints Trajectory Controllers for Each Planning Group,to generate controller for the

groups that we prepared before, see Figure 4.20.

74

Figure 4. 20: Setup ROS Controllers

Figure 4. 21: File configuration Saving

Finally, we have to save our package that we prepared in a separate file to be ready for

launching later, see Figure 4.21. ROS Packages and codes can be found in Appendix D.

4.4. Building the main structure of the control

algorithm

Automation of labor is currently in great demand in contemporary greenhouses, orchards,

plantations, and woods, and agricultural systems. The number of skilled workers willing

to accept monotonous activities is steadily dwindling and the jobs are getting harder for

75

them. The working environment in greenhouses also has difficult climate conditions

which may affect the human being health system.

The greenhouse industry's economic viability is under threat and getting few productions

as a result of the rise in labor costs and decreased capacity[42],[3]. Developing scientific

knowledge and experience for a highly configurable, modular, and clever carrier platform

that includes a modular manipulator and intelligent tools (sensors, algorithms, sprayers,

and grippers) that can be quickly installed onto the interested system and are capable of

adapting to new tasks and conditions is one of the main goals of the Aibomech Agrobot

project.

The robot arm will move following the requirements of the plant and the plant's readiness

based on the feedback we will gather from the system we are using. Because of this, the

entire governing algorithm will operate as indicated in Figure 4.22. The inputs for the

system's master can come from a variety of sources. The expert who visits the farm daily,

weekly, or even monthly can make use of these resources. Additionally, it can be

obtained through the sensors that were mounted on the system during installation. These

sensors may be vision sensors, such as cameras, or they may be digital, such nutrient

solution sensors or soil analyzer sensors.

After receiving the inputs, we may examine them in the data base we set up on the

backend of our software frame and provide the instructions for the robot to follow in

order to complete the required work.

Figure 4. 22: Entire system controlling Algorithm

76

Modern robotics places, and come up with a strong emphasis on the close relationship

between morphology, or outward appearance, and highly intelligent behavior. The

behavior is seen and utilize as the outcome of sensors driving actuators in a sensory-

motor loop controlling system that is inseparably mediated by the environment and

controlled by the right selected middleware system.

While emphasizing the importance of hardware which is running the system. This

viewpoint also suggests that the software component that links sensing components with

acting components is principally responsible for flexibility and goal-directed agricultural

intelligence system[3].

4.4.1. Building the architecture of the ROS controller

The robot arm kinematic Model has to be equivalent to the real robot. Therefore, the

robot model in ROS contains crucial packages and some important nodes that aid in

creating the 3D robot models in the virtual frame. These packages employ the Unified

Robot Description Format (URDF). So the manipulator model is described in the URDF,

which is an XML specification. To perform robot work, we have to prepare the inertia

matrix, collision detection matrix, robot joints and arms visualization, the transmission

of joints actuators, reduction rate, actuators that will be used, gazebo plugin, sensor

plugin, and required controllers that we may use during task implementation.

Following the preparation of the packages we previously discussed, as shown in Figure

4.23, we could launch the files using a Linux terminal and visualize our robotic arm to

interact with it using RVIZ ,GAZEBO, and MOVEIT interfaces. There are two packages

to deal with to interact with the robot arm which are joint_state_publisher and

robot_state_publisher. These packages are responsible for transforming the internal case

of the joint of the robot arm so that we can move, stop, and visualize the status of every

singular joint by helping these two packages.

MOVEIT, which enables us to operate robotic arms and create the desired trajectories, is

one of the most intriguing packages. The procedure that MOVEIT work basically

depends on robot kinematics and dynamics KDL, and inverse kinematics of the robot

arm so that by bringing the end effector of the robot arm to the desired position in

different places, we can implement and repeat that action as much as we can, see Figure

4.24.

77

Figure 4. 23: RVIZ with its joint publisher GUI

As we have already indicated, there are already created packages available for editing,

modifying, and improving.

4.4.2. Controlling the inputs coming from the agricultural

system

As we mentioned before, we will get some data from some sensors, experts, and/or

cameras. These data will help us to decide where the robot arm should go. Therefore,

after collecting all these data, the robot should know which plant needs to be getting some

operations such as harvesting and/or pesticide spraying as we mentioned before.

Figure 4. 24:Path planning with MOVEIT

78

However, firstly, we count the places where the robot should go and prioritize those

places one by one depending on the readiness of the plant, the quantity of the plant that

needs to be harvested, and the need for the plant that will be sprayed.

Figure 4. 25 The internal control algorithm of the robot arm

After considering all the previous parameters, we can decide the exact location of every

singular plant, and the MOVEIT group will give the command to the robot controller that

will help the robot arm hardware and physical interface to move to the target to

implement its task, see Figure 4.25.

4.4.3. ROS and Arduino control and communicating structure

Figure 4. 26 ROS and Arduino Control Structure

79

As it shows in Figure 4.26 The control strategy is running by the help of Arduino Serial

so that there is ROS with its requirements, and it is publishing sensor messages

instantaneously that contains the joint states of the arm. Therefore, Arduino can receive

that data, process them, and manipulate them, to make them suitable for servo motors.

On the other hand, Arduino can publish the robot joints angles too. It can send them via

rosserial, and we can display them in ROS terminal to understand the behavior of robot

joints and follow the system functioning. All strategy has been achieved using ROS

publisher and subscriber topics that we mentioned about them at the beginning of this

chapter. Arduino script and required codes are in Appendix C, part 2 under the name of

Communication and control of Agrobot robotic Arm using ROS and Arduino

Microcontroller.

80

Chapter 5

5 Conclusion

In this study, we created an articulated robot arm with new configurations that will be

better suited for use in agriculture and the execution of its tasks. We perform the

mathematical calculations required for the modeling and control of the robot arm.

Additionally, we created, produced, and modified the robot's components so that they

could be used with ROS APPs. Additionally, we developed a system control method that

will aid researchers and developers who wish to carry out further research in this area.

By integrating an arm into a mobile robot, the robot will be able to gather information

from the agricultural field and determine where it should move. We could not build the

complete agricultural system because of the enormous expense needed, so we built just

the robot arm using 3D printing and simulated it using ROS interfaces.

We used mathematical modeling that primarily relies on Denavit-Hardenberg principles,

which enabled us to create a new labeling table from which we were able to derive the

homogenous transformation matrices for the model we created. The serial robotics arms

supported by this new model configuration will have fresh images that will aid

researchers and developers in finding solutions to global problems. Additionally, as we

can see in the section on dynamics calculations, the manipulator joints torques were

calculated using the Lagrangian method with the aid of the Christoffel Symbol of the

First Kind. Our goal was to use this method to systematically simplify the large number

of dynamical equations so that any robotic developer could use it to perform some of the

dynamical calculations necessary for a serial robot manipulator.

Dynamics calculations aid in the proper selection of the joints' actuators. As can be seen

from joint torque graphs, our mechanism's joints' torque varies from joint to joint,

necessitating the employment of various motors with various torques. However, we

employed the LX-16A servo motor in our investigation, which has a 15 kg.cm maximum

torque. This caused the joint 1 and joint 3 of the manipulators to have various deficiencies

and vibration during experimental work, which can help us choose new actuators.

81

However, because to the restricted funds available for the project, it was challenging to

choose new, more expensive actuators when ROS would have been sufficient to complete

and run the simulation.

Over the past ten years, there has been a substantial increase in research efforts aimed at

creating agricultural robots that can efficiently complete laborious field jobs. A

commercial level of robotics has not been attained for agricultural applications and

researchers, developers, and robotics companies are intensively trying to commercialize

robotics systems to become more helpful to users.

Making an agriculture machine that can be integrated with ROS to be ready to be included

in the agricultural system is difficult today, so the tasks where we must succeed as

developers include developing its description model, ROS sensor drivers, and ROS

controller interfaces with the required controllers.

That’s why we design a new model with a new controlling algorithm that can enable

developers to create and put into practice useful agriculture automation, which is another

step toward increasing agriculture productivity and efficiency and enhancing food

security for lighting future generations' dreams.

82

References

[1] Mitra, Manu. Robotic farmers in agriculture. Advances in Robotics & Mechanical

Engineering.2019; pp. 91-93,doi: 10.32474/ARME.2019.01.000125.

[2] Concepcion II, Ronnie S.,and et al. ‘Denavit-Hartenberg-based Analytic Kinematics and

Modeling of 6R Degrees of Freedom Robotic Arm for Smart Farming. Journal of

Computational Innovations and Engineering Applications . 5.2 .2021 ; pp.1-7.

[3] Barth, R., Baur, J., Buschmann, T., Edan, Y., Hellström, T., Nguyen, T.,and Vitzrabin,

R. Using ROS for agricultural robotics-design considerations and experiences.

In Proceedings of the Second International Conference on Robotics and associated

High-technologies and equipment for agriculture and forestry , 2014, pp. 509-518.

[4] R Shamshiri, Redmond, Cornelia Weltzien, Ibrahim A. Hameed, Ian J Yule, Tony E

Grift, Siva K. Balasundram, Lenka Pitonakova, Desa Ahmad, and Girish Chowdhary.

Research and development in agricultural robotics: A perspective of digital

farming.2018. doi: 10.25165/j.ijabe.20181104.4278.

[5] Ulloa, C. C., Krus, A., Barrientos, A., Del Cerro, J., and Valero, C. Trend Technologies

for Robotic Fertilization Process in Row Crops. Frontiers in Robotics and AI. 2022; pp.

9. https://doi.org/10.3389/frobt.2022.808484.

[6] Cruz Ulloa, C., Krus, A., Barrientos, A., Del Cerro, J., and Valero, C. Robotic

fertilisation using localisation systems based on point clouds in strip-cropping

fields. Agronomy. 11.1.2020 ; pp. 11. doi:10.3390/agronomy11010011.

[7] Poon, R. J. M. Design and Control of a Mounted Robotic Arm Tool Changer and

Measurement Tools for Agriculture (Doctoral thessis), Massachusetts Institute of

Technology). 2021; pp. 122. https://hdl.handle.net/1721.1/139075.

[8] Deng, H., Xiong, J., and Xia, Z. Mobile manipulation task simulation using ROS with

MoveIt.IEEE International Conference on Real-time Computing and Robotics

(RCAR) IEEE.2017, ;pp. 612-616. doi: 10.1109/rcar.2017.8311930.

83

[9] A. Mahtani, L. Sanchez, E. Fernandez, A. Martinez, and L. Joseph, ROS Programming:

Building Powerful Robots Design, build, and simulate complex robots using the Robot

Operating System ; 2018.

[10] Koubâa, A. ed. Robot Operating System (ROS).Vol. 2. Cham: Springer. 2017; pp. 112-

156.

[11] Koubâa, Anis, ed. Robot Operating System (ROS). Vol. 1. Cham: Springer. 2016.

[12] Lentin, Joseph. ROS Robotics Projects: Build a Variety of Awesome Robots that Can

See, Sense, Move, and Do a Lot More Using the Powerful Robot Operating System.

Packet publishing ; 2017.

[13] L. Joseph, J. Cacace, and O’Reilly for Higher Education (Ed). Mastering ROS for

robotics programming. Packt Publishing,3d ed ;2021.

[14] Coleman, D., Sucan, I., Chitta, S., and Correll, N. Reducing the barrier to entry of

complex robotic software: a moveit! case study . 2014 ;

https://doi.org/10.48550/arXiv.1404.3785.

[15] DBpedia community . Denavit–Hartenberg_parameters [internet] ; 2022 [date off access

22.10.2022]. https://dbpedia.org/page/Denavit–Hartenberg_parameters.

[16] Tsai, Lung-Wen. Robot analysis : the mechanics of serial and parallel manipulators ,

John Wiley and Sons ; 1999.

[17] Reddy, A. C. Difference between Denavit-Hartenberg (DH) classical and modified

conventions for forward kinematics of robots with case study. In International

Conference on Advanced Materials and manufacturing Technologies

(AMMT) Chandigarh, India: JNTUH College of Engineering Hyderabad. 2014 ; pp. 267-

286. doi:10.13140/2.1.2012.9607.

[18] Faria, Carlos, et al. Automatic Denavit-Hartenberg parameter identification for serial

manipulators. IECON 2019-45th Annual Conference of the IEEE Industrial Electronics

Society. Vol. 1. 2019 ; pp. 610-617. doi: 10.1109/iecon.2019.8927455.

[19] Dong, Hui, Zhijiang Du, and Gregory S. Chirikjian. Workspace density and inverse

kinematics for planar serial revolute manipulators. Mechanism and Machine Theory 70

84

,2013 ; pp. 508-522. https://doi.org/10.1016/j.mechmachtheory.2013.08.008.

[20] Huczala, Daniel, Tomáš Kot, and Martin Pfurner. An Automated Conversion Between

Selected Robot Kinematic Representations. 2022 ;

https://doi.org/10.48550/arXiv.2204.02629.

[21] Jha, Aparna, Manoj Soni, and Mohd Suhaib. Simulation and kinematic analysis of KUKA

KR5 Arc robot. Vol. 1149. No. 1 . IOP Conference Series: Materials Science and

Engineering.. IOP Publishing ; 2021.

[22] Ding, Feng, and Cong Liu. Applying coordinate fixed Denavit–Hartenberg method to

solve the workspace of drilling robot arm. International journal of advanced robotic

systems 15, no. 4 ; 2018. https://doi.org/10.1177/1729881418793283.

[23] Asif, Seemal, and Philip Webb. Kinematics analysis of 6-DoF articulated robot with

spherical wrist. Mathematical Problems in Engineering 2021 ; 2021.

https://doi.org/10.1155/2021/6647035

[24] Spong, M. W., Hutchinson, S., and Vidyasagar, M. Robot modeling and control .Vol. 3.

New York: Wiley . 2006 ; pp. 75-118.

[25] Bourbonnais, Francis, Pascal Bigras, and Ilian A. Bonev. Minimum-time trajectory

planning and control of a pick-and-place five-bar parallel robot. IEEE/ASME

Transactions on Mechatronics. 20.2.2014 ; pp. 740-749. doi:

10.1109/tmech.2014.2318999.

[26] Uzuner, Sabri, Nihat AKKUŞ, and T. O. Z. Metin. 5-DOF serial robot manipulator

design, application and inverse kinematic solution through analytical method and simple

search technique. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi .26.2.2020; pp.

392-401.

[27] Aimn M,Abdellatif Baba. Robot arm control with arduino , report submitted to

department of mechanical and aeronautical engineering (graduation project).TÜRK

HAVA KURUMU ÜNİVERSİTESİ REKTÖRLÜĞÜ.

doi:10.13140/RG.2.2.10227.53286.

[28] Hiwonder Company. LX-16A-full-metal-gear-serial-bus-servo [internet] ;2022 [date off

85

access 10.10.2022].https://www.hiwonder.hk/products/hiwonder-lx-16a-full-metal-

gear-serial-bus-servo.

[29] Zubrycki, Igor, and Grzegorz Granosik. Introducing modern robotics with ros and

arduino, including case studies. Journal of Automation Mobile Robotics and Intelligent

Systems 8.1 . 2014 ; pp. 69-75. doi:10.14313/jamris_1-2014/9.

[30] Park, Jaeho, Raimarius Delgado, and Byoung Wook Choi. Real-time characteristics of

ROS 2.0 in multiagent robot systems: an empirical study. IEEE Access 8 .2020 ; pp.

154637-154651. doi: 10.1109/access.2020.3018122.

[31] PRASANNA, VEMULA, and G. ASHOK. Design, Modeling And Control of A Biped

Robot Platform Based On Poppy Project. Vol. 10; 2021.

[32] Živković, Aleksandar. Development of autonomous driving using Robot Operating

System (master’s thessis) . Polytechnic University of Madrid ; 2018 . EMSE-2018-3.

[33] Gelan, ABRAHAM AYELE. AUTONOMOUS SEARCH AND RESCUE ROBOT

USING ROS PLATFORM. (master’s thessis) . Near East University ;2019.

[34] Instructable . ROS MoveIt Robotic Arm [internet]; 2022 [date off access 10.09.2022].

https://www.instructables.com/ROS-MoveIt-Robotic-Arm/.

[35] Gandhinathan, Ramkumar, and Lentin Joseph (Ed). ROS Robotics projects: build and

control robots powered by the Robot Operating System, machine learning, and virtual

reality. Packt Publishing Ltd ; 2019.

[36] Techtarget website . Ubuntu system [internet]; 2022 [date off access 15.09.2022] .

https://www.techtarget.com/searchdatacenter/definition/Ubuntu.

[37] Ubuntu website. Ubuntu operating system installation steps [internet]; 2022 [date off

access 15.09.2022] . https://ubuntu.com/server/docs/installation.

[38] wiki website .ROS Melodic installation steps [internet] ; 2022 [date off access

10.09.2022]. http://wiki.ros.org/melodic.

[39] Joseph, Lentin (Ed). Robot operating system (ros) for absolute beginners , 2nd ed.

Springer, 2018.

86

[40] ROS documentations. ROS Packages building [internet] ; 2022 [date off access

11.09.2022]. http://docs.ros.org/en/independent/api/rospkg/html/packages.html.

[41] Yoon S-P,Han C-C, Ryu W-J ,and Tae H-i (Ed). ROS Robot Programming, from the

basic concept to practical programming and robot application, 1st ed. ROBOTIS Co,

2017.

[42] Lytridis, C., Kaburlasos, V. G., Pachidis, T., Manios, M., Vrochidou, E., Kalampokas,

T., and Chatzistamatis, S. An Overview of Cooperative Robotics in

Agriculture. Agronomy, 11(9). 2021; pp. 1818.

https://doi.org/10.3390/agronomy11091818

87

Appendices

88

Appendices

Appendix A Kinematic, and Workspace Calculations

1 Forward Kinematics

import numpy as np

import pandas as pd

import sympy as sym

from IPython.display import display,Math

import math

from sympy import *

print("-----symbolic-------")

a1,a2,a3,a4_e2,d4,d4_e1,th1,th2,th3,th4 = symbols("a1 a2 a3 a4_e2 d4 d4_e1 th1 th2 th3

th4") #symbolization of parameters

##############

 ####first link

##X-Axis

TX_1=np.array([[1 ,0 ,0, a1],[0 ,1, 0, 0],[0 ,0 ,1 ,0],[0 ,0 ,0 ,1]]) #DISPLACEMENT IN

X FOR LINK_1

##Z-Axis

RZ_1=np.array([[cos(th1) ,-sin(th1) ,0, 0],[sin(th1) ,cos(th1), 0, 0],[0 ,0 ,1 ,0],[0 ,0 ,0

,1]]) #ROTATION AROUND Z FOR LINK_1

T10=RZ_1@TX_1 #GENERAL TRANSFORMATION LINK_1

89

print("Simplified General HTM for T10 =",simplify(T10))

 ####SECOND link

##X-Axis

TX_2=np.array([[1 ,0 ,0, a2],[0 ,1, 0, 0],[0 ,0 ,1 ,0],[0 ,0 ,0 ,1]]) #DISPLACEMENT IN

X FOR LINK_1

RX_2=np.array([[1 ,0 ,0, 0],[0 ,0, 1, 0],[0 ,-1 ,0 ,0],[0 ,0 ,0 ,1]]) #ROTATION AROUND

X FOR LINK_1

##Z-Axis

RZ_2=np.array([[cos(th2) ,-sin(th2) ,0, 0],[sin(th2) ,cos(th2), 0, 0],[0 ,0 ,1 ,0],[0 ,0 ,0

,1]]) #ROTATION AROUND Z FOR LINK_2

T21=RZ_2@TX_2@RX_2 #GENERAL TRANSFORMATION LINK_2

print("Simplified General HTM for T20 =",simplify(T10@T21))

 ####THIRD link

##X-Axis

TX_3=np.array([[1 ,0 ,0, a3],[0 ,1, 0, 0],[0 ,0 ,1 ,0],[0 ,0 ,0 ,1]]) #DISPLACEMENT IN

X FOR LINK_3

RX_3=np.array([[1 ,0 ,0, 0],[0 ,0, 1, 0],[0 ,-1 ,0 ,0],[0 ,0 ,0 ,1]]) #ROTATION AROUND

X FOR LINK_3

##Z-Axis

RZ_3=np.array([[cos(th3) ,-sin(th3) ,0, 0],[sin(th3) ,cos(th3), 0, 0],[0 ,0 ,1 ,0],[0 ,0 ,0

,1]]) #ROTATION AROUND Z FOR LINK_3

T32=RZ_3@TX_3@RX_3 #GENERAL TRANSFORMATION LINK_3

print("Simplified General HTM for T30 =",simplify(T10@T21@T32))

 ####FOURTH link

90

##X-Axis

RX_4=np.array([[1 ,0 ,0, 0],[0 ,0, 1, 0],[0 ,-1 ,0 ,0],[0 ,0 ,0 ,1]]) #ROTATION AROUND

X FOR LINK_4

##Z-Axis

TZ_4=np.array([[1 ,0 ,0, 0],[0 ,1, 0,0],[0 ,0 ,1 ,d4],[0 ,0 ,0 ,1]]) #DISPLACEMENT IN

Z FOR LINK_4

#RZ_4=np.array([[0 ,0 ,1, 0],[-1 ,0, 0, 0],[0 ,0 ,1 ,0],[0 ,0 ,0 ,1]]) #ROTATION

AROUND Z FOR LINK_4

T43=TZ_4@RX_4 #GENERAL TRANSFORMATION LINK_4

print("Simplified General HTM for T40 =",simplify(T10@T21@T32@T43))

 ####end effector_1 link

##X-Axis

 #NO

##Z-Axis

TZ_E1=np.array([[1 ,0 ,0, 0],[0 ,1, 0, 0],[0 ,0 ,1 ,d4_e1],[0 ,0 ,0 ,1]]) #DISPLACEMENT

IN Z FOR LINK_E1

RZ_E1=np.array([[cos(th4) ,-sin(th4) ,0, 0],[sin(th4) ,cos(th4), 0, 0],[0 ,0 ,1 ,0],[0 ,0 ,0

,1]]) #ROTATION AROUND Z FOR LINK_E1

TE14=TZ_E1@RZ_E1 #GENERAL TRANSFORMATION LINK_E1

 ####end effector_2 link

##X-Axis

TX_E2=np.array([[1 ,0 ,0, a4_e2],[0 ,1, 0, 0],[0 ,0 ,1 ,0],[0 ,0 ,0 ,1]]) #DISPLACEMENT

IN X FOR LINK_E2

##Z-Axis

91

RZ_E2=np.array([[cos(th4) ,-sin(th4) ,0, 0],[sin(th4) ,cos(th4), 0, 0],[0 ,0 ,1 ,0],[0 ,0 ,0

,1]]) #ROTATION AROUND Z FOR LINK_E2

TE24=TX_E2@RZ_E2 #GENERAL TRANSFORMATION LINK_E2

General_HTM_E1=T10@T21@T32@T43@TE14

General_HTM_SIMP1=simplify(General_HTM_E1)

print("Simplified General HTM_E1 =",General_HTM_SIMP1)

###########

General_HTM_E2=T10@T21@T32@T43@TE24

General_HTM_SIMP2=simplify(General_HTM_E2)

print("Simplified General HTM_E2 =",General_HTM_SIMP2)

###################################3

2 Inverse kinematics

import numpy as np

import pandas as pd

import sympy as sym

from IPython.display import display,Math

import math

from sympy import *

print("-----symbolic-------")

a1,a2,a3,a4_e2,d4,d4_e1,th1,th2,th3,th4,X,Y= symbols("a1 a2 a3 a4_e2 d4 d4_e1 th1

th2 th3 th4 X Y") #symbolization of parameters

##############

92

 ####first link

##X-Axis

TX_1=np.array([[1 ,0 ,0, a1],[0 ,1, 0, 0],[0 ,0 ,1 ,0],[0 ,0 ,0 ,1]]) #DISPLACEMENT IN

X FOR LINK_1

##Z-Axis

RZ_1=np.array([[cos(th1) ,-sin(th1) ,0, 0],[sin(th1) ,cos(th1), 0, 0],[0 ,0 ,1 ,0],[0 ,0 ,0

,1]]) #ROTATION AROUND Z FOR LINK_1

T10=RZ_1@TX_1 #GENERAL TRANSFORMATION LINK_1

print("Simplified General HTM for T10 =",simplify(T10))

 ####SECOND link

##X-Axis

TX_2=np.array([[1 ,0 ,0, a2],[0 ,1, 0, 0],[0 ,0 ,1 ,0],[0 ,0 ,0 ,1]]) #DISPLACEMENT IN

X FOR LINK_1

RX_2=np.array([[1 ,0 ,0, 0],[0 ,0, 1, 0],[0 ,-1 ,0 ,0],[0 ,0 ,0 ,1]]) #ROTATION AROUND

X FOR LINK_1

##Z-Axis

RZ_2=np.array([[cos(th2) ,-sin(th2) ,0, 0],[sin(th2) ,cos(th2), 0, 0],[0 ,0 ,1 ,0],[0 ,0 ,0

,1]]) #ROTATION AROUND Z FOR LINK_2

T21=RZ_2@TX_2@RX_2 #GENERAL TRANSFORMATION LINK_2

print("Simplified General HTM for T20 =",simplify(T10@T21))

 ####THIRD link

##X-Axis

TX_3=np.array([[1 ,0 ,0, a3],[0 ,1, 0, 0],[0 ,0 ,1 ,0],[0 ,0 ,0 ,1]]) #DISPLACEMENT IN

X FOR LINK_3

93

RX_3=np.array([[1 ,0 ,0, 0],[0 ,0, 1, 0],[0 ,-1 ,0 ,0],[0 ,0 ,0 ,1]]) #ROTATION AROUND

X FOR LINK_3

##Z-Axis

RZ_3=np.array([[cos(th3) ,-sin(th3) ,0, 0],[sin(th3) ,cos(th3), 0, 0],[0 ,0 ,1 ,0],[0 ,0 ,0

,1]]) #ROTATION AROUND Z FOR LINK_3

T32=RZ_3@TX_3@RX_3 #GENERAL TRANSFORMATION LINK_3

print("Simplified General HTM for T30 =",simplify(T10@T21@T32))

 ####FOURTH link

##X-Axis

RX_4=np.array([[1 ,0 ,0, 0],[0 ,0, 1, 0],[0 ,-1 ,0 ,0],[0 ,0 ,0 ,1]]) #ROTATION AROUND

X FOR LINK_4

##Z-Axis

TZ_4=np.array([[1 ,0 ,0, 0],[0 ,1, 0,0],[0 ,0 ,1 ,d4],[0 ,0 ,0 ,1]]) #DISPLACEMENT IN

Z FOR LINK_4

#RZ_4=np.array([[0 ,0 ,1, 0],[-1 ,0, 0, 0],[0 ,0 ,1 ,0],[0 ,0 ,0 ,1]]) #ROTATION

AROUND Z FOR LINK_4

T43=TZ_4@RX_4 #GENERAL TRANSFORMATION LINK_4

print("Simplified General HTM for T40 =",simplify(T10@T21@T32@T43))

 ####end effector_1 link

##X-Axis

 #NO

##Z-Axis

TZ_E1=np.array([[1 ,0 ,0, 0],[0 ,1, 0, 0],[0 ,0 ,1 ,d4_e1],[0 ,0 ,0 ,1]]) #DISPLACEMENT

IN Z FOR LINK_E1

94

RZ_E1=np.array([[cos(th4) ,-sin(th4) ,0, 0],[sin(th4) ,cos(th4), 0, 0],[0 ,0 ,1 ,0],[0 ,0 ,0

,1]]) #ROTATION AROUND Z FOR LINK_E1

TE14=TZ_E1@RZ_E1 #GENERAL TRANSFORMATION LINK_E1

 ####end effector_2 link

##X-Axis

TX_E2=np.array([[1 ,0 ,0, a4_e2],[0 ,1, 0, 0],[0 ,0 ,1 ,0],[0 ,0 ,0 ,1]]) #DISPLACEMENT

IN X FOR LINK_E2

##Z-Axis

RZ_E2=np.array([[cos(th4) ,-sin(th4) ,0, 0],[sin(th4) ,cos(th4), 0, 0],[0 ,0 ,1 ,0],[0 ,0 ,0

,1]]) #ROTATION AROUND Z FOR LINK_E2

TE24=TX_E2@RZ_E2 #GENERAL TRANSFORMATION LINK_E2

General_HTM_E1=T10@T21@T32@T43@TE14

General_HTM_SIMP1=simplify(General_HTM_E1)

print("Simplified General HTM_E1 =",General_HTM_SIMP1)

###########

General_HTM_E2=T10@T21@T32@T43@TE24

General_HTM_SIMP2=simplify(General_HTM_E2)

print("Simplified General HTM_E2 =",General_HTM_SIMP2)

###################################3

##INVERSE KINEMATICS

R0_4e1=np.array([[1 ,0 ,0, 0],[0 ,0, 1, 0],[0 ,-1 ,0 ,0],[0 ,0 ,0 ,1]])

R0_3=RZ_1@RX_2@RX_3@RZ_3

95

iNvR0_3=np.linalg.inv(R0_3)

print("Simplified General R0_2 =",R0_3)

print("Simplified General invR0_2 =",iNvR0_3)

R3_6=iNvR0_3@R0_4

print("Simplified General r3_6 =",R3_6)

3 Jacobian Analysis

import numpy as np

import pandas as pd

import sympy as sym

from IPython.display import display,Math

from math import *

from sympy import *

init_printing()

print("-----symbolic for abriviate using R4E2 TO ZERO-------")

a1,a2,a3,a4_e2,d4,d4_e1,th1,th2,th3,th4,xp,yp = symbols("a1 a2 a3 a4_e2 d4 d4_e1 th1

th2 th3 th4 xp yp") #symbolization of parameters

##############theta2

R0_0=Matrix([[1 ,0 , 0],[0 ,1, 0],[0 ,0 ,1]])

##Z-Axis

R0_1=Matrix([[cos(th1) ,-sin(th1) , 0],[sin(th1) ,cos(th1), 0],[0 ,0 ,1]])

print("Simplified General HTM for R10 =",simplify(R0_1))

96

 ####SECOND link

##X-Axis

RX_2=Matrix([[1 ,0 ,0],[0 ,0, 1],[0 ,-1 ,0]])

##Z-Axis

RZ_2=Matrix([[cos(th2) ,-sin(th2) , 0],[sin(th2) ,cos(th2), 0],[0 ,0 ,1]])

R21=RZ_2@RX_2 #GENERAL TRANSFORMATION LINK_2

R20=R0_1@R21 #GENERAL TRANSFORMATION LINK_2

print("Simplified General ROTATION for R20 =",simplify(R20))

#print("Simplified General HTM for T20 =",simplify(T10@T21))

 ####THIRD link

RX_3=Matrix([[1 ,0 ,0],[0 ,0, 1],[0 ,-1 ,0]])

##Z-Axis

RZ_3=Matrix([[cos(th3) ,-sin(th3) , 0],[sin(th3) ,cos(th3), 0],[0 ,0 ,1]])

R32=RZ_3@RX_3 #GENERAL TRANSFORMATION LINK_2

R30=R20@R32

print("Simplified General ROTATION for R30 =",simplify(R30))

R43=np.array([[1 ,0 ,0],[0 ,0, 1],[0 ,-1 ,0]]) #ROTATION AROUND X FOR LINK_4

R40=R30@R43

print("Simplified General ROTATION for R40 =",simplify(R40))

########

97

Re24=np.array([[cos(th4) ,-sin(th4) , 0],[sin(th4) ,cos(th4), 0],[0 ,0 ,1]]) #ROTATION

AROUND Z FOR LINK_E2

R4E_20=R40@Re24

print("Simplified General ROTATION for R4E_20 =",simplify(R4E_20))

print("*******************************")

R4e2_0=Matrix([[1 ,0 ,0],[0 ,1, 0],[0 ,0 ,-1]])

#GENERAL ROTATION FOR R3_0

R30=R0_1@R21

print("Simplified General ROTATION for R30 =",simplify(R30))

invR30=R30.inv()

R4e2_3=invR30@R4e2_0

print("General ROTATION for R4e2_3 =",simplify(R4e2_3))

######################

print("direction of joints axix -----------------------")

Z0=Matrix([[0],[0],[1]])

print("DIRECTION OF JINT Z0 =",simplify(Z0))

Z1=R0_1@Z0

print("DIRECTION OF JINT Z1 =",simplify(Z1))

Z2=R20@Z0

print("DIRECTION OF JINT Z2 =",simplify(Z2))

Z3=R30@Z0

print("DIRECTION OF JINT Z3 =",simplify(Z3))

98

Z4=R40@Z0

print("DIRECTION OF JINT Z4 =",simplify(Z4))

Z5=R4E_20@Z0

print("DIRECTION OF JINT Z5 =",simplify(Z5))

print("position vector of end effector -----------------------")

r4_3=Matrix([[0],[0],[d4]])

r3_2=Matrix([[a3*cos(th3)],[a3*sin(th3)],[0]])

r2_1=Matrix([[a2*cos(th2)],[a2*sin(th2)],[0]])

r1_0=Matrix([[a1*cos(th1)],[a1*sin(th1)],[0]])

P43=R30@r4_3

print("POSITION VECTOR OF P43* =",simplify(P43))

P42=R20@r3_2+P43

print("POSITION VECTOR OF P42* =",simplify(P42))

P41=R0_1@r2_1+P42

print("POSITION VECTOR OF P41* =",simplify(P41))

P40=R0_0@r1_0+P41

print("POSITION VECTOR OF P40* =",simplify(P40))

print("JACOBIAN ANALYSIS -----------------------")

Z0_num=np.array(Z0)

Z0T=Z0_num.transpose()

#print(Z0)

99

print("Z0T ",simplify(Z0T))

P40_num=np.array(P40)

P40T=P40_num.transpose()

J1R1=np.cross(Z0T,P40T) #JACOBIAN 1 ROW 1

print("JACOBIAN 1 ROW 1",simplify(J1R1))

################

Z1_num=np.array(Z1)

Z1T=Z1_num.transpose()

#print(Z1)

print("Z1T ",simplify(Z1T))

P41_num=np.array(P41)

P41T=P41_num.transpose()

J2R1=np.cross(Z1T,P41T) #JACOBIAN 2 ROW 1

print("JACOBIAN 2 ROW 1",simplify(J2R1))

################

Z2_num=np.array(Z2)

Z2T=Z2_num.transpose()

#print(Z2)

print("Z2T ",simplify(Z2T))

P42_num=np.array(P42)

P42T=P42_num.transpose()

100

#print("Z2T ",simplify(Z2T))

#print("P42T ",simplify(P42T))

J3R1=np.cross(Z2T,P42T) #JACOBIAN 3 ROW 1

print("JACOBIAN 3 ROW 1",simplify(J3R1))

################

Z3_num=np.array(Z3)

Z3T=Z3_num.transpose()

#print(Z3)

print("Z3T ",simplify(Z3T))

P43_num=np.array(P43)

P43T=P43_num.transpose()

#print("Z3T ",simplify(Z3T))

#print("P43T ",simplify(P43T))

J4R1=np.cross(Z3T,P43T) #JACOBIAN 4 ROW 1

print("JACOBIAN 4 ROW 1",simplify(J4R1))

print("GENERAL JACOBIAN MATRICES -----------------------")

print(Matrix(J1R1.transpose()))

JACOBIAN_1=print(Matrix(Z0T.transpose()))

//////////////////////

4 Workspace Analysis

a1 = 12;

101

a2 = 12;

a3 = 8;

a4 = 8.5;

d4 = 8;

d4e1 = 5;

a4e2 = 5;

tpp = 8;

tstep = 0.001;(*TIME STEP*)

tpath = t - 6;(*END EFFECTOR FUNCTION*)

tdpath = 1;

tddpath = 0;

q1value = 360;

q2value = 360;

q3value = 360;

q4value = 360;

m1 = 0.07;

m2 = 0.07;

m3 = 0.05;

m4 = 0.05;

q1 = Table[(47 + q1value)*tpath*\[Pi]/180, {t, 1, tpp, tstep}];

q2 = Table[(191 + q2value)*tpath*\[Pi]/180, {t, 1, tpp, tstep}];

102

q3 = Table[(164 + q3value)*tpath*\[Pi]/180, {t, 1, tpp, tstep}];

q4 = Table[(180 + q4value)*tpath*\[Pi]/180, {t, 1, tpp, tstep}];

 (*GRIPPER ONE FORWARD KINEMATIC*)

Forward1 = ({

 {Cos[q1 + q2]*Cos[q3 - q4], Cos[q1 + q2]*Sin[q3 - q4],

 Sin[q1 + q2],

 a1*Cos[q1] + a2*Cos[q1 + q2] + a3*Cos[q3]*Cos[q1 + q2] -

 d4*Sin[q3]*Cos[q1 + q2] + d4e1*Sin[q1 + q2]},

 {Sin[q1 + q2]*Cos[q3 - q4],

 Sin[q1 + q2]*Sin[q3 - q4], -Cos[q1 + q2],

 a1*Sin[q1] + a2*Sin[q1 + q2] + a3*Cos[q3]*Sin[q1 + q2] -

 d4*Sin[q3]*Sin[q1 + q2] - d4e1*Cos[q1 + q2]},

 {-Sin[q3 - q4], Cos[q3 - q4], 0, a3*Sin[q3] - d4*Cos[q3]},

 {0, 0, 0, 1}

 });

 (*GRIPPER TWO FORWARD KINEMATIC*)

Forward2 = ({

 {Cos[q1 + q2]*Cos[q3 - q4], Cos[q1 + q2]*Sin[q3 - q4],

 Sin[q1 + q2],

 a1*Cos[q1] + a2*Cos[q1 + q2] + a3*Cos[q3]*Cos[q1 + q2] +

 a4e2*Cos[q3]*Cos[q1 + q2] - d4*Sin[q3]*Cos[q1 + q2]},

103

 {Sin[q1 + q2]*Cos[q3 - q4],

 Sin[q1 + q2]*Sin[q3 - q4], -Cos[q1 + q2],

 a1*Sin[q1] + a2*Sin[q1 + q2] + a3*Cos[q3]*Sin[q1 + q2] +

 a4e2*Cos[q3]*Sin[q1 + q2] - d4*Sin[q3]*Sin[q1 + q2]},

 {-Sin[q3 - q4], Cos[q3 - q4],

 1, -a3*Sin[q3] - a4e2*Sin[q3] - d4*Cos[q3]},

 {0, 0, 0, 1}

 });

(*GRIPPER ONE POSITIONS*)

XPOSITIONEE1 = Forward1[[1, 4]];

YPOSITIONEE1 = Forward1[[2, 4]];

ZPOSITIONEE1 = Forward1[[3, 4]];

Points1 =

 Table[{XPOSITIONEE1[[i]], YPOSITIONEE1[[i]], ZPOSITIONEE1[[i]]}, {i,

 0, Dimensions[XPOSITIONEE1][[1]]}];

(*ListPointPlot3D[Points1,PlotRange\[Rule]All,ColorFunction\[Rule]\

Function[{x,y,z},Hue[z]],PlotLabel\[Rule]"Gripper1",Filling\[Rule]Top]\

*)

ListPointPlot3D[Points1, PlotRange -> All,

 PlotStyle -> {Darker[Brown], Specularity[Red, 5], PointSize[0.1]},

104

 Axes -> None, PlotLabel -> "Gripper1", Filling -> Top]

(*GRIPPER TOW POSITIONS*)

XPOSITIONEE2 = Forward2[[1, 4]];

YPOSITIONEE2 = Forward2[[2, 4]];

ZPOSITIONEE2 = Forward2[[3, 4]];

Points2 =

 Table[{XPOSITIONEE2[[j]], YPOSITIONEE2[[j]], ZPOSITIONEE2[[j]]}, {j,

 0, Dimensions[XPOSITIONEE2][[1]]}];

(*ListPointPlot3D[Points2,PlotRange\[Rule]All,PlotStyle\[Rule]\

PointSize[Tiny],Filling\[Rule]Top]*)

ListPointPlot3D[Points2, PlotRange -> All,

 PlotStyle -> {Darker[Purple], Specularity[Red, 5], PointSize[0.1]},

 Axes -> None, PlotLabel -> "Gripper2", Filling -> Top]

Appendix B Dynamic Calculations

Link Inertia matrix calculations codes

1 - Links Inertia Matrices Computation

105

106

2 - Links Jacobian Computation

Links radius Calculations

Links Z-Directions

107

General position vector of the links described on base frame

General formulation for joints submatrices Jacobian

108

JV4 = ({

{1/2 (cos(q2) (2 a3 + 2 a2 cos(q3) + a4 cos(q4)) sin(q1) +

cos(q1) (2 a3 + a4 cos(q4)) sin(q2) +

2 cos(q3) (a1 sin(q1) + a2 cos(q1) sin(q2))), -(1/2) cos(

q1 + q2) (d3 cos(q3) + a3 sin(q3)), -a1 sin(q1) -

1/2 a2 sin(q1 + q2), -(1/2) a2 sin(q1 + q2)},

{1/2 ((2 a3 + 2 a2 cos(q3) + a4 cos(q4)) sin(q1) sin(q2) -

cos(q1) (2 a1 cos(q3) +

cos(q2) (2 a3 + 2 a2 cos(q3) + a4 cos(q4)))), -(1/2) sin(

q1 + q2) (d3 cos(q3) + a3 sin(q3)),

a1 cos(q1) + 1/2 a2 cos(q1 + q2), 1/2 a2 cos(q1 + q2)},

{a1 sin(q2) sin(q3),

1/2 (-2 a2 - 2 a1 cos(q2) - a3 cos(q3) + d3 sin(q3)), 0, 0}

})

109

3 - General Mass inertia Matrix for Dynamic equation, first term

MTT=Simplify[M1+M2+M3+M4]//TraditionalForm

({

 {1/24 (8 m1 a12+24 m2 a12+12 m3 a12+18 m4 a12+6 (2 m3-m4) cos(2 q2) a12+3 m4

cos(2 (q2-q3)) a12+6 m4 cos(2 q3) a12+3 m4 cos(2 (q2+q3)) a12+24 a2 (m2+2

m3+m4) cos(q2) a1+12 a2 m4 cos(q2-2 q3) a1+24 a3 m3 cos(q2-q3) a1+24 a3 m4

cos(q2-q3) a1+24 a3 m3 cos(q2+q3) a1+24 a3 m4 cos(q2+q3) a1+12 a2 m4 cos(q2+2

q3) a1+6 a4 m4 cos(q2-q3-q4) a1+6 a4 m4 cos(q2+q3-q4) a1+6 a4 m4 cos(q2-q3+q4)

a1+6 a4 m4 cos(q2+q3+q4) a1+24 d3 m3 sin(q2-q3) a1-24 d3 m3 sin(q2+q3) a1+8

a22 m2+24 a22 m3+25 a32 m3+24 d32 m3+12 a22 m4+24 a32 m4+4 a42 m4+48 a2 a3

m3 cos(q3)+48 a2 a3 m4 cos(q3)-a32 m3 cos(2 q3)+12 a22 m4 cos(2 q3)+12 a2 a4 m4

cos(q3-q4)+a42 m4 cos(2 (q3-q4))+24 a3 a4 m4 cos(q4)+3 a42 m4 cos(2 q4)+12 a2 a4

m4 cos(q3+q4)-48 a2 d3 m3 sin(q3)), 1/24 (-6 m4 cos(2 q2-q3) a12+6 m4 cos(2

q2+q3) a12+12 a2 m2 cos(q2) a1-12 (a3 m3+a2 m4) cos(q2-q3) a1+12 a3 m3

cos(q2+q3) a1+12 a2 m4 cos(q2+q3) a1+12 d3 m4 sin(q2) a1-12 d3 m3 sin(q2-q3)

a1-12 d3 m3 sin(q2+q3) a1+8 a22 m2+a32 m3+a42 m4-a32 m3 cos(2 q3)+a42 m4

cos(2 (q3-q4))), 1/24 (-24 m4 cos(q3) a12-24 a3 m4 cos(q2) a1-18 a2 m4 cos(q2-q3)

a1-18 a2 m4 cos(q2+q3) a1-6 a4 m4 cos(q2-q4) a1-6 a4 m4 cos(q2+q4) a1+a32

m3+a42 m4-12 a2 a3 m4-12 a22 m4 cos(q3)-a32 m3 cos(2 q3)+a42 m4 cos(2 (q3-q4))-

6 a2 a4 m4 cos(q4)), 1/24 m4 (-12 cos(q3) a22-12 a3 a2-6 a1 cos(q2-q3) a2-6 a1

cos(q2+q3) a2-6 a4 cos(q4) a2+a42+a42 cos(2 (q3-q4)))},

 {1/24 (-6 m4 cos(2 q2-q3) a12+6 m4 cos(2 q2+q3) a12+12 a2 m2 cos(q2) a1-12 (a3

m3+a2 m4) cos(q2-q3) a1+12 a3 m3 cos(q2+q3) a1+12 a2 m4 cos(q2+q3) a1+12 d3

m4 sin(q2) a1-12 d3 m3 sin(q2-q3) a1-12 d3 m3 sin(q2+q3) a1+8 a22 m2+a32

m3+a42 m4-a32 m3 cos(2 q3)+a42 m4 cos(2 (q3-q4))), 1/24 (24 m3 a12+12 m4

a12+12 m4 cos(2 q2) a12+48 a2 (m3+m4) cos(q2) a1+12 a3 m4 cos(q2-q3) a1+12 a3

m4 cos(q2+q3) a1+12 d3 m4 sin(q2-q3) a1-12 d3 m4 sin(q2+q3) a1+8 a22 m2+24 a22

m3+a32 m3+24 a22 m4+6 a32 m4+a42 m4+6 d32 m4+24 a2 a3 m4 cos(q3)-a32 m3

cos(2 q3)+a42 m4 cos(2 (q3-q4))-24 a2 d3 m4 sin(q3)), 1/24 (12 m3 a22+12 a1 m3

cos(q2) a2+a32 m3+a42 m4-6 a1 a3 m4 cos(q2-q3)-a32 m3 cos(2 q3)+6 a1 a3 m4

110

cos(q2+q3)+a42 m4 cos(2 (q3-q4))-6 a1 d3 m4 sin(q2-q3)-6 a1 d3 m4 sin(q2+q3)),

1/12 a42 m4 cos2(q3-q4)},

 {1/24 (-24 m4 cos(q3) a12-24 a3 m4 cos(q2) a1-18 a2 m4 cos(q2-q3) a1-18 a2 m4

cos(q2+q3) a1-6 a4 m4 cos(q2-q4) a1-6 a4 m4 cos(q2+q4) a1+a32 m3+a42 m4-12 a2

a3 m4-12 a22 m4 cos(q3)-a32 m3 cos(2 q3)+a42 m4 cos(2 (q3-q4))-6 a2 a4 m4

cos(q4)), 1/24 (12 m3 a22+12 a1 m3 cos(q2) a2+a32 m3+a42 m4-6 a1 a3 m4 cos(q2-

q3)-a32 m3 cos(2 q3)+6 a1 a3 m4 cos(q2+q3)+a42 m4 cos(2 (q3-q4))-6 a1 d3 m4

sin(q2-q3)-6 a1 d3 m4 sin(q2+q3)), 1/24 (24 m4 a12+24 a2 m4 cos(q2) a1+6 a22

m3+a32 m3+6 a22 m4+a42 m4-a32 m3 cos(2 q3)+a42 m4 cos(2 (q3-q4))), 1/24 m4 (6

a22+12 a1 cos(q2) a2+a42+a42 cos(2 (q3-q4)))},

 {1/24 m4 (-12 cos(q3) a22-12 a3 a2-6 a1 cos(q2-q3) a2-6 a1 cos(q2+q3) a2-6 a4

cos(q4) a2+a42+a42 cos(2 (q3-q4))), 1/12 a42 m4 cos2(q3-q4), 1/24 m4 (6 a22+12 a1

cos(q2) a2+a42+a42 cos(2 (q3-q4))), 1/24 m4 (6 a22+a42+a42 cos(2 (q3-q4)))}

 }

4 - Christoffel Symbols of the First Kind

Christoffel Symbols of the First Kind

I 1

J 1

K 1 C111 m11/q1+m11/q1-m11/q1 C1R1

C
O

LU
M

N
1

K 2 C112 m21/q1+m21/q1-m11/q2 C1R2

K 3 C113 m31/q1+m31/q1-m11/q3 C1R3

K 4 C114 m41/q1+m41/q1-m11/q4 C1R4

J 2

K 1 C121 m12/q1+m11/q2-m12/q1 C1R1

K 2 C122 m22/q1+m21/q2-m12/q2 C1R2

K 3 C123 m32/q1+m31/q2-m12/q3 C1R3

K 4 C124 m42/q1+m41/q2-m12/q4 C1R4

J 3

K 1 C131 m13/q1+m11/q3-m13/q1 C1R1

K 2 C132 m23/q1+m21/q3-m13/q2 C1R2

K 3 C133 m33/q1+m31/q3-m13/q3 C1R3

K 4 C134 m43/q1+m41/q3-m13/q4 C1R4

J 4

K 1 C141 m14/q1+m11/q4-m14/q1 C1R1

K 2 C142 m24/q1+m21/q4-m14/q2 C1R2

K 3 C143 m34/q1+m31/q4-m14/q3 C1R3

 K 4 C144 m44/q1+m41/q4-m14/q4 C1R4

111

I 2

J 1

K 1 C211 m11/q2+m12/q1-m21/q1 C2R1

C
O

LU
M

N
2

K 2 C212 m21/q2+m22/q1-m21/q2 C2R2

K 3 C213 m31/q2+m32/q1-m21/q3 C2R3

K 4 C214 m41/q2+m42/q1-m21/q4 C2R4

J 2

K 1 C221 m12/q2+m12/q2-m22/q1 C2R1

K 2 C222 m22/q2+m22/q2-m22/q2 C2R2

K 3 C223 m32/q2+m32/q2-m22/q3 C2R3

K 4 C224 m42/q2+m42/q2-m22/q4 C2R4

J 3

K 1 C231 m13/q2+m12/q3-m23/q1 C2R1

K 2 C232 m23/q2+m22/q3-m23/q2 C2R2

K 3 C233 m33/q2+m32/q3-m23/q3 C2R3

K 4 C234 m43/q2+m42/q3-m23/q4 C2R4

J 4

K 1 C241 m14/q2+m12/q4-m23/q1 C2R1

K 2 C242 m24/q2+m22/q4-m23/q2 C2R2

K 3 C243 m34/q2+m32/q4-m23/q3 C2R3

 K 4 C244 m44/q2+m42/q4-m23/q4 C2R4

I 3

J 1

K 1 C311 m11/q3+m13/q1-m31/q1 C3R1

C
O

LU
M

N
3

K 2 C312 m21/q3+m23/q1-m31/q2 C3R2

K 3 C313 m31/q3+m33/q1-m31/q3 C3R3

K 4 C314 m41/q3+m43/q1-m31/q4 C3R4

J 2

K 1 C321 m12/q3+m13/q2-m32/q1 C3R1

K 2 C322 m22/q3+m23/q2-m32/q2 C3R2

K 3 C323 m32/q3+m33/q2-m32/q3 C3R3

K 4 C324 m42/q3+m43/q2-m32/q4 C3R4

J 3

K 1 C331 m13/q3+m13/q3-m33/q1 C3R1

K 2 C332 m23/q3+m23/q3-m33/q2 C3R2

K 3 C333 m33/q3+m33/q3-m33/q3 C3R3

K 4 C334 m43/q3+m43/q3-m33/q4 C3R4

J 4

K 1 C341 m14/q3+m13/q4-m34/q1 C3R1

K 2 C342 m24/q3+m23/q4-m34/q2 C3R2

K 3 C343 m34/q3+m33/q4-m34/q3 C3R3

 K 4 C344 m44/q3+m43/q4-m34/q4 C3R4

I 4
J 1

K 1 C411 m11/q4+m14/q1-m41/q1 C4R1

C
O

LU
M

N
4

K 2 C412 m21/q4+m24/q1-m41/q2 C4R2

K 3 C413 m31/q4+m34/q1-m41/q3 C4R3

K 4 C414 m41/q4+m44/q1-m41/q4 C4R4

J 2 K 1 C421 m12/q4+m14/q2-m42/q1 C4R1

112

K 2 C422 m22/q4+m24/q2-m42/q2 C4R2

K 3 C423 m32/q4+m34/q2-m42/q3 C4R3

K 4 C424 m42/q4+m44/q2-m42/q4 C4R4

J 3

K 1 C431 m13/q4+m14/q3-m43/q1 C4R1

K 2 C432 m23/q4+m24/q3-m43/q2 C4R2

K 3 C433 m33/q4+m34/q3-m43/q3 C4R3

K 4 C434 m43/q4+m44/q3-m43/q4 C4R4

J 4

K 1 C441 m14/q4+m14/q4-m44/q1 C4R1

K 2 C442 m24/q4+m24/q4-m44/q2 C4R2

K 3 C443 m34/q4+m34/q4-m44/q3 C4R3

 K 4 C444 m44/q4+m44/q4-m44/q4 C4R4

Christoffel Symbols of the First Kind Columns preparation

113

5 – Preparing M matrices that will be used to calculate 𝒄𝒊𝒋𝒌 elements

M11 = 1/24 (8 a1^2 m1 + 24 a1^2 m2 + 8 a2^2 m2 + 12 a1^2 m3 +

 24 a2^2 m3 + 25 a3^2 m3 + 24 d3^2 m3 + 18 a1^2 m4 + 12 a2^2 m4 +

 24 a3^2 m4 + 4 a4^2 m4 + 24 a1 a2 (m2 + 2 m3 + m4) Cos[q2] +

 6 a1^2 (2 m3 - m4) Cos[2 q2] + 12 a1 a2 m4 Cos[q2 - 2 q3] +

 24 a1 a3 m3 Cos[q2 - q3] + 24 a1 a3 m4 Cos[q2 - q3] +

 3 a1^2 m4 Cos[2 (q2 - q3)] + 48 a2 a3 m3 Cos[q3] +

 48 a2 a3 m4 Cos[q3] - a3^2 m3 Cos[2 q3] + 6 a1^2 m4 Cos[2 q3] +

 12 a2^2 m4 Cos[2 q3] + 24 a1 a3 m3 Cos[q2 + q3] +

 24 a1 a3 m4 Cos[q2 + q3] + 3 a1^2 m4 Cos[2 (q2 + q3)] +

 12 a1 a2 m4 Cos[q2 + 2 q3] + 6 a1 a4 m4 Cos[q2 - q3 - q4] +

 12 a2 a4 m4 Cos[q3 - q4] + a4^2 m4 Cos[2 (q3 - q4)] +

 6 a1 a4 m4 Cos[q2 + q3 - q4] + 24 a3 a4 m4 Cos[q4] +

 3 a4^2 m4 Cos[2 q4] + 6 a1 a4 m4 Cos[q2 - q3 + q4] +

 12 a2 a4 m4 Cos[q3 + q4] + 6 a1 a4 m4 Cos[q2 + q3 + q4] +

 24 a1 d3 m3 Sin[q2 - q3] - 48 a2 d3 m3 Sin[q3] -

 24 a1 d3 m3 Sin[q2 + q3]);

M12 = 1/24 (8 a2^2 m2 + a3^2 m3 + a4^2 m4 + 12 a1 a2 m2 Cos[q2] -

 12 a1 (a3 m3 + a2 m4) Cos[q2 - q3] - 6 a1^2 m4 Cos[2 q2 - q3] -

 a3^2 m3 Cos[2 q3] + 12 a1 a3 m3 Cos[q2 + q3] +

 12 a1 a2 m4 Cos[q2 + q3] + 6 a1^2 m4 Cos[2 q2 + q3] +

114

 a4^2 m4 Cos[2 (q3 - q4)] + 12 a1 d3 m4 Sin[q2] -

 12 a1 d3 m3 Sin[q2 - q3] - 12 a1 d3 m3 Sin[q2 + q3]);

M13 = 1/24 (a3^2 m3 - 12 a2 a3 m4 + a4^2 m4 - 24 a1 a3 m4 Cos[q2] -

 18 a1 a2 m4 Cos[q2 - q3] - 24 a1^2 m4 Cos[q3] -

 12 a2^2 m4 Cos[q3] - a3^2 m3 Cos[2 q3] -

 18 a1 a2 m4 Cos[q2 + q3] - 6 a1 a4 m4 Cos[q2 - q4] +

 a4^2 m4 Cos[2 (q3 - q4)] - 6 a2 a4 m4 Cos[q4] -

 6 a1 a4 m4 Cos[q2 + q4]);

M14 = 1/24 m4 (-12 a2 a3 + a4^2 - 6 a1 a2 Cos[q2 - q3] -

 12 a2^2 Cos[q3] - 6 a1 a2 Cos[q2 + q3] + a4^2 Cos[2 (q3 - q4)] -

 6 a2 a4 Cos[q4]);

M21 = 1/24 (8 a2^2 m2 + a3^2 m3 + a4^2 m4 + 12 a1 a2 m2 Cos[q2] -

 12 a1 (a3 m3 + a2 m4) Cos[q2 - q3] - 6 a1^2 m4 Cos[2 q2 - q3] -

 a3^2 m3 Cos[2 q3] + 12 a1 a3 m3 Cos[q2 + q3] +

 12 a1 a2 m4 Cos[q2 + q3] + 6 a1^2 m4 Cos[2 q2 + q3] +

 a4^2 m4 Cos[2 (q3 - q4)] + 12 a1 d3 m4 Sin[q2] -

 12 a1 d3 m3 Sin[q2 - q3] - 12 a1 d3 m3 Sin[q2 + q3]);

M22 = 1/24 (8 a2^2 m2 + 24 a1^2 m3 + 24 a2^2 m3 + a3^2 m3 +

 12 a1^2 m4 + 24 a2^2 m4 + 6 a3^2 m4 + a4^2 m4 + 6 d3^2 m4 +

 48 a1 a2 (m3 + m4) Cos[q2] + 12 a1^2 m4 Cos[2 q2] +

 12 a1 a3 m4 Cos[q2 - q3] + 24 a2 a3 m4 Cos[q3] -

115

 a3^2 m3 Cos[2 q3] + 12 a1 a3 m4 Cos[q2 + q3] +

 a4^2 m4 Cos[2 (q3 - q4)] + 12 a1 d3 m4 Sin[q2 - q3] -

 24 a2 d3 m4 Sin[q3] - 12 a1 d3 m4 Sin[q2 + q3]);

M23 = 1/24 (12 a2^2 m3 + a3^2 m3 + a4^2 m4 + 12 a1 a2 m3 Cos[q2] -

 6 a1 a3 m4 Cos[q2 - q3] - a3^2 m3 Cos[2 q3] +

 6 a1 a3 m4 Cos[q2 + q3] + a4^2 m4 Cos[2 (q3 - q4)] -

 6 a1 d3 m4 Sin[q2 - q3] - 6 a1 d3 m4 Sin[q2 + q3]);

M24 = 1/12 a4^2 m4 Cos[q3 - q4]^2;

M31 = 1/24 (a3^2 m3 - 12 a2 a3 m4 + a4^2 m4 - 24 a1 a3 m4 Cos[q2] -

 18 a1 a2 m4 Cos[q2 - q3] - 24 a1^2 m4 Cos[q3] -

 12 a2^2 m4 Cos[q3] - a3^2 m3 Cos[2 q3] -

 18 a1 a2 m4 Cos[q2 + q3] - 6 a1 a4 m4 Cos[q2 - q4] +

 a4^2 m4 Cos[2 (q3 - q4)] - 6 a2 a4 m4 Cos[q4] -

 6 a1 a4 m4 Cos[q2 + q4]);

M32 = 1/24 (12 a2^2 m3 + a3^2 m3 + a4^2 m4 + 12 a1 a2 m3 Cos[q2] -

 6 a1 a3 m4 Cos[q2 - q3] - a3^2 m3 Cos[2 q3] +

 6 a1 a3 m4 Cos[q2 + q3] + a4^2 m4 Cos[2 (q3 - q4)] -

 6 a1 d3 m4 Sin[q2 - q3] - 6 a1 d3 m4 Sin[q2 + q3]);

M33 = 1/24 (6 a2^2 m3 + a3^2 m3 + 24 a1^2 m4 + 6 a2^2 m4 + a4^2 m4 +

 24 a1 a2 m4 Cos[q2] - a3^2 m3 Cos[2 q3] +

 a4^2 m4 Cos[2 (q3 - q4)]);

116

M34 = 1/24 m4 (6 a2^2 + a4^2 + 12 a1 a2 Cos[q2] +

 a4^2 Cos[2 (q3 - q4)]);

M41 = 1/24 m4 (-12 a2 a3 + a4^2 - 6 a1 a2 Cos[q2 - q3] -

 12 a2^2 Cos[q3] - 6 a1 a2 Cos[q2 + q3] + a4^2 Cos[2 (q3 - q4)] -

 6 a2 a4 Cos[q4]);

M42 = 1/12 a4^2 m4 Cos[q3 - q4]^2;

M43 = 1/24 m4 (6 a2^2 + a4^2 + 12 a1 a2 Cos[q2] +

 a4^2 Cos[2 (q3 - q4)]);

M44 = 1/24 m4 (6 a2^2 + a4^2 + a4^2 Cos[2 (q3 - q4)]);

117

6– Computing 𝒄𝒊𝒋𝒌 elements values

118

119

7– Computing Coriolis and Centrifugal 4 by 4 matrix

120

8- Computing Torque values for robot Joints

TORQUEMATRIX = Simplify[MMATRIX] + Simplify[CMATRIX]

 TORQUEMATRIX = ({

 {-2 a1^2 m4 Cos[q2]^2 (q2d^2 + q1d q3d Cos[q3]) Sin[q3] +

 1/24 (m4 q4dd (-12 a2 a3 + a4^2 - 6 a1 a2 Cos[q2 - q3] -

 12 a2^2 Cos[q3] - 6 a1 a2 Cos[q2 + q3] +

 a4^2 Cos[2 (q3 - q4)] - 6 a2 a4 Cos[q4]) -

 q3dd (-a3^2 m3 + 12 a2 a3 m4 - a4^2 m4 +

 24 a1 a3 m4 Cos[q2] + 18 a1 a2 m4 Cos[q2 - q3] +

 24 a1^2 m4 Cos[q3] + 12 a2^2 m4 Cos[q3] +

 a3^2 m3 Cos[2 q3] + 18 a1 a2 m4 Cos[q2 + q3] +

 6 a1 a4 m4 Cos[q2 - q4] - a4^2 m4 Cos[2 (q3 - q4)] +

 6 a2 a4 m4 Cos[q4] + 6 a1 a4 m4 Cos[q2 + q4]) +

 q1dd (8 a1^2 m1 + 24 a1^2 m2 + 8 a2^2 m2 + 12 a1^2 m3 +

 24 a2^2 m3 + 25 a3^2 m3 + 24 d3^2 m3 + 18 a1^2 m4 +

 12 a2^2 m4 + 24 a3^2 m4 + 4 a4^2 m4 +

 24 a1 a2 (m2 + 2 m3 + m4) Cos[q2] +

 6 a1^2 (2 m3 - m4) Cos[2 q2] +

 12 a1 a2 m4 Cos[q2 - 2 q3] + 24 a1 a3 m3 Cos[q2 - q3] +

 24 a1 a3 m4 Cos[q2 - q3] + 3 a1^2 m4 Cos[2 (q2 - q3)] +

 48 a2 a3 m3 Cos[q3] + 48 a2 a3 m4 Cos[q3] -

121

 a3^2 m3 Cos[2 q3] + 6 a1^2 m4 Cos[2 q3] +

 12 a2^2 m4 Cos[2 q3] + 24 a1 a3 m3 Cos[q2 + q3] +

 24 a1 a3 m4 Cos[q2 + q3] + 3 a1^2 m4 Cos[2 (q2 + q3)] +

 12 a1 a2 m4 Cos[q2 + 2 q3] +

 6 a1 a4 m4 Cos[q2 - q3 - q4] + 12 a2 a4 m4 Cos[q3 - q4] +

 a4^2 m4 Cos[2 (q3 - q4)] + 6 a1 a4 m4 Cos[q2 + q3 - q4] +

 24 a3 a4 m4 Cos[q4] + 3 a4^2 m4 Cos[2 q4] +

 6 a1 a4 m4 Cos[q2 - q3 + q4] + 12 a2 a4 m4 Cos[q3 + q4] +

 6 a1 a4 m4 Cos[q2 + q3 + q4] + 24 a1 d3 m3 Sin[q2 - q3] -

 48 a2 d3 m3 Sin[q3] - 24 a1 d3 m3 Sin[q2 + q3]) +

 q2dd (8 a2^2 m2 + a3^2 m3 + a4^2 m4 + 12 a1 a2 m2 Cos[q2] -

 12 a1 (a3 m3 + a2 m4) Cos[q2 - q3] -

 6 a1^2 m4 Cos[2 q2 - q3] - a3^2 m3 Cos[2 q3] +

 12 a1 a3 m3 Cos[q2 + q3] + 12 a1 a2 m4 Cos[q2 + q3] +

 6 a1^2 m4 Cos[2 q2 + q3] + a4^2 m4 Cos[2 (q3 - q4)] +

 12 a1 d3 m4 Sin[q2] - 12 a1 d3 m3 Sin[q2 - q3] -

 12 a1 d3 m3 Sin[q2 + q3])) -

 a1 Cos[q2] (-d3 m4 q2d^2 + 4 a1 m3 q1d q2d Sin[q2] +

 2 a3 m3 q2d^2 Sin[q3] + 2 a2 m4 q2d^2 Sin[q3] +

 4 a3 m3 q1d q3d Sin[q3] + 4 a3 m4 q1d q3d Sin[q3] -

 a2 m4 q3d q4d Sin[q3] + 2 a4 m4 q1d q3d Cos[q4] Sin[q3] -

122

 a4 m4 q3d q4d Sin[q4] +

 2 Cos[q3] (d3 m3 q2d^2 + 2 d3 m3 q1d q3d +

 a1 m4 q2d q3d Sin[q2] + 4 a2 m4 q1d q3d Sin[q3] +

 a4 m4 q1d q4d Sin[q4])) +

 1/6 (6 a1^2 m4 q1d q2d Sin[2 q2] -

 6 a1^2 m4 q1d q2d Cos[2 q3] Sin[2 q2] -

 9 a1 a2 m4 q3d^2 Sin[q2 - q3] +

 3 a1 a2 m4 q2d q4d Sin[q2 - q3] -

 24 a2 a3 m3 q1d q3d Sin[q3] - 24 a2 a3 m4 q1d q3d Sin[q3] +

 12 a1^2 m4 q3d^2 Sin[q3] + 6 a2^2 m4 q3d^2 Sin[q3] +

 6 a2^2 m4 q3d q4d Sin[q3] -

 12 a2 a4 m4 q1d q3d Cos[q4] Sin[q3] +

 12 a1^2 m4 q2d^2 Sin[q2]^2 Sin[q3] -

 6 a1 q2d Sin[

 q2] (2 a2 m2 q1d + 4 a2 m3 q1d + a2 m4 q1d + a2 m2 q2d -

 2 a3 m4 q3d + a2 m4 q1d Cos[2 q3] - a4 m4 q3d Cos[q4] -

 4 d3 m3 q1d Sin[q3] - 2 d3 m3 q3d Sin[q3]) +

 a3^2 m3 q1d q3d Sin[2 q3] - 12 a2^2 m4 q1d q3d Sin[2 q3] +

 a3^2 m3 q2d q3d Sin[2 q3] + a3^2 m3 q3d^2 Sin[2 q3] -

 3 a1^2 m4 q1d q3d Cos[2 q2] Sin[2 q3] +

 a4^2 m4 q1d q4d Cos[q4]^2 Sin[2 q3] -

123

 a4^2 m4 q1d q3d Cos[2 q4] Sin[2 q3] +

 9 a1 a2 m4 q3d^2 Sin[q2 + q3] +

 3 a1 a2 m4 q2d q4d Sin[q2 + q3] -

 a4^2 m4 q2d q3d Sin[2 (q3 - q4)] -

 a4^2 m4 q3d^2 Sin[2 (q3 - q4)] +

 a4^2 m4 q2d q4d Sin[2 (q3 - q4)] +

 a4^2 m4 q4d^2 Sin[2 (q3 - q4)] -

 12 a3 a4 m4 q1d q4d Sin[q4] + 3 a2 a4 m4 q3d q4d Sin[q4] +

 3 a2 a4 m4 q4d^2 Sin[q4] -

 a4^2 m4 q1d q4d Cos[2 q3 - q4] Sin[q4] -

 5 a4^2 m4 q1d q4d Cos[q4] Sin[q4] -

 2 a4^2 m4 q1d q3d Cos[q4] Sin[q3]^2 Sin[q4] -

 6 Cos[q3] (a1 q2d (4 a3 m3 q1d + 4 a3 m4 q1d + 2 a3 m3 q3d -

 a2 m4 q3d + 2 a4 m4 q1d Cos[q4]) Sin[q2] +

 q1d (4 a2 d3 m3 q3d + a1^2 m4 q3d Sin[q3] +

 2 a2 a4 m4 q4d Sin[q4])) -

 m4 q1d Cos[

 q3]^2 (12 a1 a2 q2d Sin[q2] +

 a4^2 (-q3d + q4d) Sin[2 q4]))},

 {1/24 (2 a4^2 m4 q4dd Cos[q3 - q4]^2 +

 q1dd (8 a2^2 m2 + a3^2 m3 + a4^2 m4 + 12 a1 a2 m2 Cos[q2] -

124

 12 a1 (a3 m3 + a2 m4) Cos[q2 - q3] -

 6 a1^2 m4 Cos[2 q2 - q3] - a3^2 m3 Cos[2 q3] +

 12 a1 a3 m3 Cos[q2 + q3] + 12 a1 a2 m4 Cos[q2 + q3] +

 6 a1^2 m4 Cos[2 q2 + q3] + a4^2 m4 Cos[2 (q3 - q4)] +

 12 a1 d3 m4 Sin[q2] - 12 a1 d3 m3 Sin[q2 - q3] -

 12 a1 d3 m3 Sin[q2 + q3]) +

 q2dd (8 a2^2 m2 + 24 a1^2 m3 + 24 a2^2 m3 + a3^2 m3 +

 12 a1^2 m4 + 24 a2^2 m4 + 6 a3^2 m4 + a4^2 m4 +

 6 d3^2 m4 + 48 a1 a2 (m3 + m4) Cos[q2] +

 12 a1^2 m4 Cos[2 q2] + 12 a1 a3 m4 Cos[q2 - q3] +

 24 a2 a3 m4 Cos[q3] - a3^2 m3 Cos[2 q3] +

 12 a1 a3 m4 Cos[q2 + q3] + a4^2 m4 Cos[2 (q3 - q4)] +

 12 a1 d3 m4 Sin[q2 - q3] - 24 a2 d3 m4 Sin[q3] -

 12 a1 d3 m4 Sin[q2 + q3]) +

 q3dd (12 a2^2 m3 + a3^2 m3 + a4^2 m4 + 12 a1 a2 m3 Cos[q2] -

 6 a1 a3 m4 Cos[q2 - q3] - a3^2 m3 Cos[2 q3] +

 6 a1 a3 m4 Cos[q2 + q3] + a4^2 m4 Cos[2 (q3 - q4)] -

 6 a1 d3 m4 Sin[q2 - q3] - 6 a1 d3 m4 Sin[q2 + q3])) +

 1/6 (-3 a1 d3 m4 (2 q2d - q3d) q3d Cos[q2 - q3] -

 6 a1 d3 m4 q2d q3d Cos[q2 + q3] -

 3 a1 d3 m4 q3d^2 Cos[q2 + q3] + 6 a1 a2 m2 q1d^2 Sin[q2] +

125

 12 a1 a2 m3 q1d^2 Sin[q2] + 6 a1 a2 m4 q1d^2 Sin[q2] -

 12 a1 a2 m3 q2d^2 Sin[q2] - 12 a1 a2 m4 q2d^2 Sin[q2] -

 12 a1 a3 m4 q1d q3d Sin[q2] + 6 a1 a2 m4 q3d^2 Sin[q2] +

 6 a1 a2 m4 q3d q4d Sin[q2] -

 6 a1^2 m4 q1d^2 Cos[q2] Sin[q2] +

 6 a1 a2 m4 q1d^2 Cos[q3]^2 Sin[q2] -

 6 a1 a4 m4 q1d q3d Cos[q4] Sin[q2] +

 6 a1 Cos[

 q3] (a3 m4 (2 q1d^2 - q2d^2) + 2 a3 m3 q1d (q1d - q3d) -

 5 a2 m4 q1d q3d + a4 m4 q1d^2 Cos[q4]) Sin[q2] +

 6 a1^2 m3 q1d^2 Sin[2 q2] - 6 a1^2 m4 q2d^2 Sin[2 q2] +

 3 a1^2 m4 q1d^2 Cos[2 q3] Sin[2 q2] -

 6 m4 q3d Cos[q3] (2 a2 d3 q2d + a1^2 q1d Sin[2 q2]) +

 6 a1 a3 m4 q2d q3d Sin[q2 - q3] -

 3 a1 a3 m4 q3d^2 Sin[q2 - q3] -

 3 a1 a2 m4 q1d q4d Sin[q2 - q3] -

 12 a2 a3 m4 q2d q3d Sin[q3] -

 12 a1 d3 m3 q1d^2 Sin[q2] Sin[q3] +

 6 a1 d3 m4 q2d^2 Sin[q2] Sin[q3] +

 12 a1 d3 m3 q1d q3d Sin[q2] Sin[q3] -

 6 a1 a2 m4 q1d^2 Sin[q2] Sin[q3]^2 +

126

 a3^2 m3 q1d q3d Sin[2 q3] + a3^2 m3 q2d q3d Sin[2 q3] +

 a3^2 m3 q3d^2 Sin[2 q3] - 6 a1 a3 m4 q2d q3d Sin[q2 + q3] -

 3 a1 a3 m4 q3d^2 Sin[q2 + q3] -

 3 a1 a2 m4 q1d q4d Sin[q2 + q3] -

 a4^2 m4 q1d q3d Sin[2 (q3 - q4)] -

 a4^2 m4 q2d q3d Sin[2 (q3 - q4)] -

 a4^2 m4 q3d^2 Sin[2 (q3 - q4)] +

 a4^2 m4 q1d q4d Sin[2 (q3 - q4)] +

 a4^2 m4 q2d q4d Sin[2 (q3 - q4)] +

 a4^2 m4 q4d^2 Sin[2 (q3 - q4)])},

 {1/24 (m4 q4dd (6 a2^2 + a4^2 + 12 a1 a2 Cos[q2] +

 a4^2 Cos[2 (q3 - q4)]) +

 q3dd (6 a2^2 m3 + a3^2 m3 + 24 a1^2 m4 + 6 a2^2 m4 +

 a4^2 m4 + 24 a1 a2 m4 Cos[q2] - a3^2 m3 Cos[2 q3] +

 a4^2 m4 Cos[2 (q3 - q4)]) -

 q1dd (-a3^2 m3 + 12 a2 a3 m4 - a4^2 m4 +

 24 a1 a3 m4 Cos[q2] + 18 a1 a2 m4 Cos[q2 - q3] +

 24 a1^2 m4 Cos[q3] + 12 a2^2 m4 Cos[q3] +

 a3^2 m3 Cos[2 q3] + 18 a1 a2 m4 Cos[q2 + q3] +

 6 a1 a4 m4 Cos[q2 - q4] - a4^2 m4 Cos[2 (q3 - q4)] +

 6 a2 a4 m4 Cos[q4] + 6 a1 a4 m4 Cos[q2 + q4]) +

127

 q2dd (12 a2^2 m3 + a3^2 m3 + a4^2 m4 + 12 a1 a2 m3 Cos[q2] -

 6 a1 a3 m4 Cos[q2 - q3] - a3^2 m3 Cos[2 q3] +

 6 a1 a3 m4 Cos[q2 + q3] + a4^2 m4 Cos[2 (q3 - q4)] -

 6 a1 d3 m4 Sin[q2 - q3] - 6 a1 d3 m4 Sin[q2 + q3])) +

 1/12 (6 a1 a2 m4 q1d q4d Sin[q2 - q3] +

 24 a2 a3 m3 q1d^2 Sin[q3] + 24 a2 a3 m4 q1d^2 Sin[q3] +

 12 a2 a3 m4 q2d^2 Sin[q3] - 12 a2^2 m4 q1d q4d Sin[q3] +

 24 a1 a3 m3 q1d^2 Cos[q2] Sin[q3] +

 24 a1 a3 m4 q1d^2 Cos[q2] Sin[q3] +

 12 a2 a4 m4 q1d^2 Cos[q4] Sin[q3] +

 12 a1 a4 m4 q1d^2 Cos[q2] Cos[q4] Sin[q3] -

 12 a1 q2d Sin[

 q2] (-2 a3 m4 q1d + a2 m3 q2d + 2 a2 m4 q3d + a2 m4 q4d -

 a4 m4 q1d Cos[q4] + 2 d3 m3 q1d Sin[q3]) +

 2 Cos[q3] (12 a2 d3 m3 q1d^2 + 6 a2 d3 m4 q2d^2 +

 6 a1 (2 a3 m3 + 5 a2 m4) q1d q2d Sin[q2] +

 6 a1^2 m4 q1d q2d Sin[2 q2] - a3^2 m3 q1d^2 Sin[q3] +

 3 a1^2 m4 q1d^2 Sin[q3] - a3^2 m3 q2d^2 Sin[q3] +

 12 a1 q1d^2 Cos[q2] (d3 m3 + 2 a2 m4 Sin[q3])) +

 12 a2^2 m4 q1d^2 Sin[2 q3] - 2 a3^2 m3 q1d q2d Sin[2 q3] +

 a3^2 m3 q3d^2 Sin[2 q3] +

128

 6 a1^2 m4 q1d^2 Cos[q2]^2 Sin[2 q3] +

 3 a1^2 m4 q1d^2 Cos[2 q2] Sin[2 q3] +

 a4^2 m4 q1d^2 Cos[2 q4] Sin[2 q3] -

 6 a1 a2 m4 q1d q4d Sin[q2 + q3] -

 6 a1 a4 m4 q1d q4d Sin[q2 - q4] +

 2 a4^2 m4 q1d q2d Sin[2 (q3 - q4)] +

 a4^2 m4 q2d^2 Sin[2 (q3 - q4)] -

 a4^2 m4 q3d^2 Sin[2 (q3 - q4)] +

 4 a4^2 m4 q1d q4d Sin[2 (q3 - q4)] +

 4 a4^2 m4 q2d q4d Sin[2 (q3 - q4)] +

 2 a4^2 m4 q3d q4d Sin[2 (q3 - q4)] +

 3 a4^2 m4 q4d^2 Sin[2 (q3 - q4)] +

 6 a2 a4 m4 q1d q4d Sin[q4] -

 2 a4^2 m4 q1d^2 Cos[q3]^2 Cos[q4] Sin[q4] +

 a4^2 m4 q1d^2 Sin[q3]^2 Sin[2 q4] +

 6 a1 a4 m4 q1d q4d Sin[q2 + q4])},

 {1/24 m4 (2 a4^2 q2dd Cos[q3 - q4]^2 +

 q4dd (6 a2^2 + a4^2 + a4^2 Cos[2 (q3 - q4)]) +

 q3dd (6 a2^2 + a4^2 + 12 a1 a2 Cos[q2] +

 a4^2 Cos[2 (q3 - q4)]) +

 q1dd (-12 a2 a3 + a4^2 - 6 a1 a2 Cos[q2 - q3] -

129

 12 a2^2 Cos[q3] - 6 a1 a2 Cos[q2 + q3] +

 a4^2 Cos[2 (q3 - q4)] - 6 a2 a4 Cos[q4])) +

 1/12 m4 (q2d (3 a1 a2 q1d Sin[q2 - q3] +

 3 a1 a2 q1d Sin[q2 + q3] -

 a4^2 (q1d + q2d + 3 q3d) Sin[2 (q3 - q4)]) -

 q3d (6 a1 a2 q2d Sin[q2] +

 a4 (a4 (2 q2d + 3 q3d + q4d) Sin[2 (q3 - q4)] +

 6 a1 q1d Cos[q2] Sin[q4])) +

 q4d (q2d (3 a1 a2 Sin[q2 - q3] + 3 a1 a2 Sin[q2 + q3] +

 a4^2 Sin[2 (q3 - q4)]) +

 2 a4 q4d (a4 Sin[2 (q3 - q4)] + 3 a2 Sin[q4]) +

 3 q3d (2 a2 (a2 + a1 Cos[q2]) Sin[q3] +

 a4 (a2 + 2 a1 Cos[q2]) Sin[q4]) -

 a4 q1d ((12 a3 + a4 Cos[2 q3 - q4] + 5 a4 Cos[q4]) Sin[

 q4] - 2 Cos[

 q3] (a4 Cos[q4]^2 Sin[q3] -

 6 (a2 + a1 Cos[q2]) Sin[q4]) +

 a4 Cos[q3]^2 Sin[2 q4])) +

 q1d (q2d (3 a1 a2 Sin[q2 - q3] + 3 a1 a2 Sin[q2 + q3] -

 a4^2 Sin[2 (q3 - q4)]) +

 a4 q1d ((12 a3 + a4 Cos[2 q3 - q4] + 5 a4 Cos[q4]) Sin[

130

 q4] - 2 Cos[

 q3] (a4 Cos[q4]^2 Sin[q3] -

 6 (a2 + a1 Cos[q2]) Sin[q4]) +

 a4 Cos[q3]^2 Sin[2 q4]) -

 q3d (3 a1 a2 Sin[q2 - q3] - 6 a2^2 Sin[q3] -

 3 a1 a2 Sin[q2 + q3] - 3 a1 a4 Sin[q2 - q4] +

 2 a4^2 Sin[2 (q3 - q4)] + 3 a2 a4 Sin[q4] +

 3 a1 a4 Sin[q2 + q4])))}

 });

T1 = Simplify[TORQUEMATRIX [[1, 1]]]

T2 = Simplify[TORQUEMATRIX [[2, 1]]]

T3 = Simplify[TORQUEMATRIX [[3, 1]]]

T4 = Simplify[TORQUEMATRIX[[4, 1]]]

9- Drawing Torque Values Graphs

a1=12;

a2=12;

a3=8;

a4=8.5;

d3=8;

tpp=1.9; (*time range*)

tstep=0.001; (*time step*)

131

tpath=2t+6;(*time dependent function*)

tdpath=1;(*time dependent function derivative*)

tddpath=0;

q1value=35;

q2value=55;

q3value=-40;

q4value=50;

q1=Table[(47+q1value)*tpath*π/180,{t,1,tpp,tstep}];

q2=Table[(191+q2value)*tpath*π/180,{t,1,tpp,tstep}];

q3=Table[(164+q3value)*tpath*π/180,{t,1,tpp,tstep}];

q4=Table[(180+q4value)*tpath*π/180,{t,1,tpp,tstep}];

q1d=Table[q1value*tdpath*π/180,{t,1,tpp,tstep}];

q2d=Table[q2value*tdpath*π/180,{t,1,tpp,tstep}];

q3d=Table[q3value*tdpath*π/180,{t,1,tpp,tstep}];

q4d=Table[q4value*tdpath*π/180,{t,1,tpp,tstep}];

q1dd=Table[q1value*tddpath*π/180,{t,1,tpp,tstep}];

q2dd=Table[q2value*tddpath*π/180,{t,1,tpp,tstep}];

q3dd=Table[q3value*tddpath*π/180,{t,1,tpp,tstep}];

q4dd=Table[q4value*tddpath*π/180,{t,1,tpp,tstep}];

m1=0.07;

m2=0.07;

132

m3=0.05;

m4=0.05;

T1=1/24 (m4 q4dd (-12 a2 a3+a42-6 a1 a2 Cos[q2-q3]-12 a22 Cos[q3]-6 a1 a2

Cos[q2+q3]+a42 Cos[2 (q3-q4)]-6 a2 a4 Cos[q4])-q3dd (-a32 m3+12 a2 a3 m4-a42

m4+24 a1 a3 m4 Cos[q2]+18 a1 a2 m4 Cos[q2-q3]+24 a12 m4 Cos[q3]+12 a22 m4

Cos[q3]+a32 m3 Cos[2 q3]+18 a1 a2 m4 Cos[q2+q3]+6 a1 a4 m4 Cos[q2-q4]-a42 m4

Cos[2 (q3-q4)]+6 a2 a4 m4 Cos[q4]+6 a1 a4 m4 Cos[q2+q4])-48 a12 m4 Cos[q2]2

(q2d2+q1d q3d Cos[q3]) Sin[q3]+q1dd (8 a12 m1+24 a12 m2+8 a22 m2+12 a12 m3+24

a22 m3+25 a32 m3+24 d32 m3+18 a12 m4+12 a22 m4+24 a32 m4+4 a42 m4+24 a1 a2

(m2+2 m3+m4) Cos[q2]+6 a12 (2 m3-m4) Cos[2 q2]+12 a1 a2 m4 Cos[q2-2 q3]+24

a1 a3 m3 Cos[q2-q3]+24 a1 a3 m4 Cos[q2-q3]+3 a12 m4 Cos[2 (q2-q3)]+48 a2 a3 m3

Cos[q3]+48 a2 a3 m4 Cos[q3]-a32 m3 Cos[2 q3]+6 a12 m4 Cos[2 q3]+12 a22 m4 Cos[2

q3]+24 a1 a3 m3 Cos[q2+q3]+24 a1 a3 m4 Cos[q2+q3]+3 a12 m4 Cos[2 (q2+q3)]+12

a1 a2 m4 Cos[q2+2 q3]+6 a1 a4 m4 Cos[q2-q3-q4]+12 a2 a4 m4 Cos[q3-q4]+a42 m4

Cos[2 (q3-q4)]+6 a1 a4 m4 Cos[q2+q3-q4]+24 a3 a4 m4 Cos[q4]+3 a42 m4 Cos[2

q4]+6 a1 a4 m4 Cos[q2-q3+q4]+12 a2 a4 m4 Cos[q3+q4]+6 a1 a4 m4

Cos[q2+q3+q4]+24 a1 d3 m3 Sin[q2-q3]-48 a2 d3 m3 Sin[q3]-24 a1 d3 m3

Sin[q2+q3])+q2dd (8 a22 m2+a32 m3+a42 m4+12 a1 a2 m2 Cos[q2]-12 a1 (a3 m3+a2

m4) Cos[q2-q3]-6 a12 m4 Cos[2 q2-q3]-a32 m3 Cos[2 q3]+12 a1 a3 m3

Cos[q2+q3]+12 a1 a2 m4 Cos[q2+q3]+6 a12 m4 Cos[2 q2+q3]+a42 m4 Cos[2 (q3-

q4)]+12 a1 d3 m4 Sin[q2]-12 a1 d3 m3 Sin[q2-q3]-12 a1 d3 m3 Sin[q2+q3])-24 a1

Cos[q2] (-d3 m4 q2d2+4 a1 m3 q1d q2d Sin[q2]+2 a3 m3 q2d2 Sin[q3]+2 a2 m4 q2d2

Sin[q3]+4 a3 m3 q1d q3d Sin[q3]+4 a3 m4 q1d q3d Sin[q3]-a2 m4 q3d q4d Sin[q3]+2

a4 m4 q1d q3d Cos[q4] Sin[q3]-a4 m4 q3d q4d Sin[q4]+2 Cos[q3] (d3 m3 q2d2+2 d3

m3 q1d q3d+a1 m4 q2d q3d Sin[q2]+4 a2 m4 q1d q3d Sin[q3]+a4 m4 q1d q4d

Sin[q4]))+4 (6 a12 m4 q1d q2d Sin[2 q2]-6 a12 m4 q1d q2d Cos[2 q3] Sin[2 q2]-9 a1

a2 m4 q3d2 Sin[q2-q3]+3 a1 a2 m4 q2d q4d Sin[q2-q3]-24 a2 a3 m3 q1d q3d Sin[q3]-

24 a2 a3 m4 q1d q3d Sin[q3]+12 a12 m4 q3d2 Sin[q3]+6 a22 m4 q3d2 Sin[q3]+6 a22

m4 q3d q4d Sin[q3]-12 a2 a4 m4 q1d q3d Cos[q4] Sin[q3]+12 a12 m4 q2d2 Sin[q2]2

Sin[q3]-6 a1 q2d Sin[q2] (2 a2 m2 q1d+4 a2 m3 q1d+a2 m4 q1d+a2 m2 q2d-2 a3 m4

q3d+a2 m4 q1d Cos[2 q3]-a4 m4 q3d Cos[q4]-4 d3 m3 q1d Sin[q3]-2 d3 m3 q3d

Sin[q3])+a32 m3 q1d q3d Sin[2 q3]-12 a22 m4 q1d q3d Sin[2 q3]+a32 m3 q2d q3d

133

Sin[2 q3]+a32 m3 q3d2 Sin[2 q3]-3 a12 m4 q1d q3d Cos[2 q2] Sin[2 q3]+a42 m4 q1d

q4d Cos[q4]2 Sin[2 q3]-a42 m4 q1d q3d Cos[2 q4] Sin[2 q3]+9 a1 a2 m4 q3d2

Sin[q2+q3]+3 a1 a2 m4 q2d q4d Sin[q2+q3]-a42 m4 q2d q3d Sin[2 (q3-q4)]-a42 m4

q3d2 Sin[2 (q3-q4)]+a42 m4 q2d q4d Sin[2 (q3-q4)]+a42 m4 q4d2 Sin[2 (q3-q4)]-12 a3

a4 m4 q1d q4d Sin[q4]+3 a2 a4 m4 q3d q4d Sin[q4]+3 a2 a4 m4 q4d2 Sin[q4]-a42 m4

q1d q4d Cos[2 q3-q4] Sin[q4]-5 a42 m4 q1d q4d Cos[q4] Sin[q4]-2 a42 m4 q1d q3d

Cos[q4] Sin[q3]2 Sin[q4]-6 Cos[q3] (a1 q2d (4 a3 m3 q1d+4 a3 m4 q1d+2 a3 m3 q3d-

a2 m4 q3d+2 a4 m4 q1d Cos[q4]) Sin[q2]+q1d (4 a2 d3 m3 q3d+a12 m4 q3d Sin[q3]+2

a2 a4 m4 q4d Sin[q4]))-m4 q1d Cos[q3]2 (12 a1 a2 q2d Sin[q2]+a42 (-q3d+q4d) Sin[2

q4])));

T2=1/24 (2 a42 m4 q4dd Cos[q3-q4]2+q1dd (8 a22 m2+a32 m3+a42 m4+12 a1 a2 m2

Cos[q2]-12 a1 (a3 m3+a2 m4) Cos[q2-q3]-6 a12 m4 Cos[2 q2-q3]-a32 m3 Cos[2

q3]+12 a1 a3 m3 Cos[q2+q3]+12 a1 a2 m4 Cos[q2+q3]+6 a12 m4 Cos[2 q2+q3]+a42

m4 Cos[2 (q3-q4)]+12 a1 d3 m4 Sin[q2]-12 a1 d3 m3 Sin[q2-q3]-12 a1 d3 m3

Sin[q2+q3])+q2dd (8 a22 m2+24 a12 m3+24 a22 m3+a32 m3+12 a12 m4+24 a22 m4+6

a32 m4+a42 m4+6 d32 m4+48 a1 a2 (m3+m4) Cos[q2]+12 a12 m4 Cos[2 q2]+12 a1 a3

m4 Cos[q2-q3]+24 a2 a3 m4 Cos[q3]-a32 m3 Cos[2 q3]+12 a1 a3 m4 Cos[q2+q3]+a42

m4 Cos[2 (q3-q4)]+12 a1 d3 m4 Sin[q2-q3]-24 a2 d3 m4 Sin[q3]-12 a1 d3 m4

Sin[q2+q3])+q3dd (12 a22 m3+a32 m3+a42 m4+12 a1 a2 m3 Cos[q2]-6 a1 a3 m4

Cos[q2-q3]-a32 m3 Cos[2 q3]+6 a1 a3 m4 Cos[q2+q3]+a42 m4 Cos[2 (q3-q4)]-6 a1 d3

m4 Sin[q2-q3]-6 a1 d3 m4 Sin[q2+q3])+4 (-3 a1 d3 m4 (2 q2d-q3d) q3d Cos[q2-q3]-6

a1 d3 m4 q2d q3d Cos[q2+q3]-3 a1 d3 m4 q3d2 Cos[q2+q3]+6 a1 a2 m2 q1d2

Sin[q2]+12 a1 a2 m3 q1d2 Sin[q2]+6 a1 a2 m4 q1d2 Sin[q2]-12 a1 a2 m3 q2d2 Sin[q2]-

12 a1 a2 m4 q2d2 Sin[q2]-12 a1 a3 m4 q1d q3d Sin[q2]+6 a1 a2 m4 q3d2 Sin[q2]+6 a1

a2 m4 q3d q4d Sin[q2]-6 a12 m4 q1d2 Cos[q2] Sin[q2]+6 a1 a2 m4 q1d2 Cos[q3]2

Sin[q2]-6 a1 a4 m4 q1d q3d Cos[q4] Sin[q2]+6 a1 Cos[q3] (a3 m4 (2 q1d2-q2d2)+2 a3

m3 q1d (q1d-q3d)-5 a2 m4 q1d q3d+a4 m4 q1d2 Cos[q4]) Sin[q2]+6 a12 m3 q1d2 Sin[2

q2]-6 a12 m4 q2d2 Sin[2 q2]+3 a12 m4 q1d2 Cos[2 q3] Sin[2 q2]-6 m4 q3d Cos[q3] (2

a2 d3 q2d+a12 q1d Sin[2 q2])+6 a1 a3 m4 q2d q3d Sin[q2-q3]-3 a1 a3 m4 q3d2 Sin[q2-

q3]-3 a1 a2 m4 q1d q4d Sin[q2-q3]-12 a2 a3 m4 q2d q3d Sin[q3]-12 a1 d3 m3 q1d2

Sin[q2] Sin[q3]+6 a1 d3 m4 q2d2 Sin[q2] Sin[q3]+12 a1 d3 m3 q1d q3d Sin[q2]

Sin[q3]-6 a1 a2 m4 q1d2 Sin[q2] Sin[q3]2+a32 m3 q1d q3d Sin[2 q3]+a32 m3 q2d q3d

Sin[2 q3]+a32 m3 q3d2 Sin[2 q3]-6 a1 a3 m4 q2d q3d Sin[q2+q3]-3 a1 a3 m4 q3d2

134

Sin[q2+q3]-3 a1 a2 m4 q1d q4d Sin[q2+q3]-a42 m4 q1d q3d Sin[2 (q3-q4)]-a42 m4

q2d q3d Sin[2 (q3-q4)]-a42 m4 q3d2 Sin[2 (q3-q4)]+a42 m4 q1d q4d Sin[2 (q3-q4)]+a42

m4 q2d q4d Sin[2 (q3-q4)]+a42 m4 q4d2 Sin[2 (q3-q4)]));

T3=1/24 (m4 q4dd (6 a22+a42+12 a1 a2 Cos[q2]+a42 Cos[2 (q3-q4)])+q3dd (6 a22

m3+a32 m3+24 a12 m4+6 a22 m4+a42 m4+24 a1 a2 m4 Cos[q2]-a32 m3 Cos[2 q3]+a42

m4 Cos[2 (q3-q4)])-q1dd (-a32 m3+12 a2 a3 m4-a42 m4+24 a1 a3 m4 Cos[q2]+18 a1

a2 m4 Cos[q2-q3]+24 a12 m4 Cos[q3]+12 a22 m4 Cos[q3]+a32 m3 Cos[2 q3]+18 a1

a2 m4 Cos[q2+q3]+6 a1 a4 m4 Cos[q2-q4]-a42 m4 Cos[2 (q3-q4)]+6 a2 a4 m4

Cos[q4]+6 a1 a4 m4 Cos[q2+q4])+q2dd (12 a22 m3+a32 m3+a42 m4+12 a1 a2 m3

Cos[q2]-6 a1 a3 m4 Cos[q2-q3]-a32 m3 Cos[2 q3]+6 a1 a3 m4 Cos[q2+q3]+a42 m4

Cos[2 (q3-q4)]-6 a1 d3 m4 Sin[q2-q3]-6 a1 d3 m4 Sin[q2+q3])+2 (6 a1 a2 m4 q1d q4d

Sin[q2-q3]+24 a2 a3 m3 q1d2 Sin[q3]+24 a2 a3 m4 q1d2 Sin[q3]+12 a2 a3 m4 q2d2

Sin[q3]-12 a22 m4 q1d q4d Sin[q3]+24 a1 a3 m3 q1d2 Cos[q2] Sin[q3]+24 a1 a3 m4

q1d2 Cos[q2] Sin[q3]+12 a2 a4 m4 q1d2 Cos[q4] Sin[q3]+12 a1 a4 m4 q1d2 Cos[q2]

Cos[q4] Sin[q3]-12 a1 q2d Sin[q2] (-2 a3 m4 q1d+a2 m3 q2d+2 a2 m4 q3d+a2 m4

q4d-a4 m4 q1d Cos[q4]+2 d3 m3 q1d Sin[q3])+2 Cos[q3] (12 a2 d3 m3 q1d2+6 a2 d3

m4 q2d2+6 a1 (2 a3 m3+5 a2 m4) q1d q2d Sin[q2]+6 a12 m4 q1d q2d Sin[2 q2]-a32

m3 q1d2 Sin[q3]+3 a12 m4 q1d2 Sin[q3]-a32 m3 q2d2 Sin[q3]+12 a1 q1d2 Cos[q2] (d3

m3+2 a2 m4 Sin[q3]))+12 a22 m4 q1d2 Sin[2 q3]-2 a32 m3 q1d q2d Sin[2 q3]+a32 m3

q3d2 Sin[2 q3]+6 a12 m4 q1d2 Cos[q2]2 Sin[2 q3]+3 a12 m4 q1d2 Cos[2 q2] Sin[2

q3]+a42 m4 q1d2 Cos[2 q4] Sin[2 q3]-6 a1 a2 m4 q1d q4d Sin[q2+q3]-6 a1 a4 m4 q1d

q4d Sin[q2-q4]+2 a42 m4 q1d q2d Sin[2 (q3-q4)]+a42 m4 q2d2 Sin[2 (q3-q4)]-a42 m4

q3d2 Sin[2 (q3-q4)]+4 a42 m4 q1d q4d Sin[2 (q3-q4)]+4 a42 m4 q2d q4d Sin[2 (q3-

q4)]+2 a42 m4 q3d q4d Sin[2 (q3-q4)]+3 a42 m4 q4d2 Sin[2 (q3-q4)]+6 a2 a4 m4 q1d

q4d Sin[q4]-2 a42 m4 q1d2 Cos[q3]2 Cos[q4] Sin[q4]+a42 m4 q1d2 Sin[q3]2 Sin[2

q4]+6 a1 a4 m4 q1d q4d Sin[q2+q4]));

T4=1/24 m4 (2 a42 q2dd Cos[q3-q4]2+q4dd (6 a22+a42+a42 Cos[2 (q3-q4)])+q3dd (6

a22+a42+12 a1 a2 Cos[q2]+a42 Cos[2 (q3-q4)])+q1dd (-12 a2 a3+a42-6 a1 a2 Cos[q2-

q3]-12 a22 Cos[q3]-6 a1 a2 Cos[q2+q3]+a42 Cos[2 (q3-q4)]-6 a2 a4 Cos[q4])+2 (q2d

(3 a1 a2 q1d Sin[q2-q3]+3 a1 a2 q1d Sin[q2+q3]-a42 (q1d+q2d+3 q3d) Sin[2 (q3-q4)])-

q3d (6 a1 a2 q2d Sin[q2]+a4 (a4 (2 q2d+3 q3d+q4d) Sin[2 (q3-q4)]+6 a1 q1d Cos[q2]

Sin[q4]))+q4d (q2d (3 a1 a2 Sin[q2-q3]+3 a1 a2 Sin[q2+q3]+a42 Sin[2 (q3-q4)])+2 a4

135

q4d (a4 Sin[2 (q3-q4)]+3 a2 Sin[q4])+3 q3d (2 a2 (a2+a1 Cos[q2]) Sin[q3]+a4 (a2+2

a1 Cos[q2]) Sin[q4])-a4 q1d ((12 a3+a4 Cos[2 q3-q4]+5 a4 Cos[q4]) Sin[q4]-2 Cos[q3]

(a4 Cos[q4]2 Sin[q3]-6 (a2+a1 Cos[q2]) Sin[q4])+a4 Cos[q3]2 Sin[2 q4]))+q1d (q2d (3

a1 a2 Sin[q2-q3]+3 a1 a2 Sin[q2+q3]-a42 Sin[2 (q3-q4)])+a4 q1d ((12 a3+a4 Cos[2 q3-

q4]+5 a4 Cos[q4]) Sin[q4]-2 Cos[q3] (a4 Cos[q4]2 Sin[q3]-6 (a2+a1 Cos[q2])

Sin[q4])+a4 Cos[q3]2 Sin[2 q4])-q3d (3 a1 a2 Sin[q2-q3]-6 a22 Sin[q3]-3 a1 a2

Sin[q2+q3]-3 a1 a4 Sin[q2-q4]+2 a42 Sin[2 (q3-q4)]+3 a2 a4 Sin[q4]+3 a1 a4

Sin[q2+q4]))));

Appendix C Arduino Microcontroller Codes

1- Codes for 3DoF Parallel Robot Manipulator

#include <math.h>

#include <Wire.h>

#include <Servo.h>

int del=10;

float xi = -10, xf = 12, yi =-8, yf = 15;

int L = 50; //links length

float xp = 76; //footprint x extention

float yp = 44; //footprint y extention

float yR = 87.5; //radius of second manipulator

float px1, py1,px2,py2,px3,py3; //x,y end effector cooordination

float r = 26, fi = 30; //platform radius and orientation

float dx; //platform x-center cordination gyro

float dy; //platform y-center cordination gyro

float rx = r * cos(30 * PI / 180), ry = r * sin(30 * PI / 180);

//platform center

//gyroscope and servo

Servo tests,tests2,tests3; //initialize a servo object for

the connected servo

136

const int MPU_ADDR = 0x68; // I2C address of the MPU-6050. If AD0

pin is set to HIGH, the I2C address will be 0x69.

int16_t accelerometer_x, accelerometer_y, accelerometer_z; //

variables for accelerometer raw data

int16_t gyro_x, gyro_y, gyro_z; // variables for gyro raw data

int16_t temperature; // variables for temperature data

char tmp_str[7]; // temporary variable used in convert function

int16_t xs = 0, ys = 0, zs = 0;

int16_t xgs = 0, ygs = 0, zgs = 0;

char* convert_int16_to_str(int16_t i)

{ // converts int16 to string. Moreover, resulting strings will

have the same length in the debug monitor.

 sprintf(tmp_str, "%6d", i);

 return tmp_str;

}

//gyro and servo finish

void setup() {

 // put your setup code here, to run once:

 Serial.begin(115200);

 Wire.begin();

 Wire.beginTransmission(MPU_ADDR); // Begins a transmission to

the I2C slave (GY-521 board)

 Wire.write(0x6B); // PWR_MGMT_1 register

 Wire.write(0); // set to zero (wakes up the MPU-6050)

 Wire.endTransmission(true);

 tests.attach(9);

 tests2.attach(10);

 tests3.attach(11);

}

void loop() {

 Wire.beginTransmission(MPU_ADDR);

 Wire.write(0x3B); // starting with register 0x3B (ACCEL_XOUT_H)

[MPU-6000 and MPU-6050 Register Map and Descriptions Revision

4.2, p.40]

 Wire.endTransmission(false); // the parameter indicates that

the Arduino will send a restart. As a result, the connection is

kept active.

 Wire.requestFrom(MPU_ADDR, 7 * 2, true); // request a total of

7*2=14 registers

 // "Wire.read()<<8 | Wire.read();" means two registers are read

and stored in the same variable

 accelerometer_x = Wire.read() << 8 | Wire.read(); // reading

registers: 0x3B (ACCEL_XOUT_H) and 0x3C (ACCEL_XOUT_L)

137

 accelerometer_y = Wire.read() << 8 | Wire.read(); // reading

registers: 0x3D (ACCEL_YOUT_H) and 0x3E (ACCEL_YOUT_L)

 accelerometer_z = Wire.read() << 8 | Wire.read(); // reading

registers: 0x3F (ACCEL_ZOUT_H) and 0x40 (ACCEL_ZOUT_L)

 temperature = Wire.read() << 8 | Wire.read(); // reading

registers: 0x41 (TEMP_OUT_H) and 0x42 (TEMP_OUT_L)

 gyro_x = Wire.read() << 8 | Wire.read(); // reading registers:

0x43 (GYRO_XOUT_H) and 0x44 (GYRO_XOUT_L)

 gyro_y = Wire.read() << 8 | Wire.read(); // reading registers:

0x45 (GYRO_YOUT_H) and 0x46 (GYRO_YOUT_L)

 gyro_z = Wire.read() << 8 | Wire.read(); // reading registers:

0x47 (GYRO_ZOUT_H) and 0x48 (GYRO_ZOUT_L)

 //accelerometer mapping values

 /*dx = map(accelerometer_x, -32768, 32767, xi, xf);

 dy = map(accelerometer_y, -32768, 32767, yi, yf);

 zs = map(accelerometer_y, -32768, 32767, 0, 180);*/

 //delay(1000);

 //gyroscope mapping values

 dx = map(gyro_x, -32768, 32768, xi, xf);

 dy= map(gyro_y, -32768, 32768, yi, yf);

 zgs = map(gyro_z, -32768, 32767, 0, 180);

 //tests.write(ys); //command to rotate the

servo to the specified angle

 //robot geometrics and inverse kinematics

 //for first manipulator

 px1 = -(xp - 13) + dx; //cordination of x position of end

effictor of manipulator one

 py1 = (yp + 7.5) + dy; //cordination of y position of end

effictor of manipulator one

 float a = sqrt((pow(px1, 2) + pow(py1, 2)) / 4); //geometrics

 float h = sqrt(pow(L, 2) - pow(a, 2));

 float alfa = atan2(h, a) * 180 / PI;

 float beta = atan2(py1, px1) * 180 / PI;

 float theta, theta1, thet1;

 if (beta < 0)

 {

 theta1 = (alfa + abs(beta));

 theta = 360 - theta1;

 tests.write(theta);

 Serial.print("servo1\t ");

 Serial.println(theta);

 delay(del);

 }

 else

138

 {

 thet1 = -alfa + abs(beta);

 tests.write(theta);

 Serial.print("servo1\t ");

 Serial.println(theta);

 delay(del);

 if (thet1 < 0)

 {

 theta = thet1 + 360;

 tests.write(theta);

 Serial.print("servo1\t ");

 Serial.println(theta);

 delay(del);

 }

 else

 {

 theta = thet1;

 tests.write(theta);

 Serial.print("servo1\t ");

 Serial.println(theta);

 delay(del);

 }

 }

 //for second manipulator

 px2 = dx-13; //cordination of x position of end effictor of

manipulator one

 py2 = -(yR-7.5)+dy; //cordination of y position of end

effictor of manipulator one

 float a2 = sqrt((pow(px2, 2) + pow(py2, 2)) / 4); //geometrics

 float h2 = sqrt(pow(L, 2) - pow(a2, 2));

 float alfa2 = atan2(h2, a2) * 180 / PI;

 float beta2 = atan2(py2, px2) * 180 / PI;

 float theta22, theta2, thet2;

 if (beta2 < 0)

 {

 theta22 = (alfa2 + abs(beta2));

 theta2 = 360 - theta22;

 tests2.write(theta2);

 Serial.print("servo2\t ");

 Serial.println(theta2);

 delay(del);

 }

 else

139

 {

 thet2 = -alfa2 + abs(beta2);

 tests2.write(theta2);

 Serial.print("servo2\t ");

 Serial.println(theta2);

 delay(del);

 if (thet2 < 0)

 {

 theta2 = thet2 + 360;

 tests2.write(theta2);

 Serial.print("servo2\t ");

 Serial.println(theta2);

 delay(del);

 }

 else

 {

 theta2 = thet2;

 tests2.write(theta2);

 Serial.print("servo2\t ");

 Serial.println(theta2);

 delay(del);

 } }

 //for third manipulator

 px3 =xp+dx; //cordination of x position of end effictor of

manipulator one

 py3 =(yp-15)+dy; //cordination of y position of end effictor

of manipulator one

 float a3 = sqrt((pow(px3, 2) + pow(py3, 2)) / 4); //geometrics

 float h3 = sqrt(pow(L, 2) - pow(a3, 2));

 float alfa3 = atan2(h3, a3) * 180 / PI;

 float beta3 = atan2(py3, px3) * 180 / PI;

 float theta33, theta3, thet3;

 if (beta3 < 0)

 {

 theta33 = (alfa3 + abs(beta3));

 theta3 = 360 - theta33;

 tests3.write(theta3);

 Serial.print("servo3\t ");

 Serial.println(theta3);

 delay(del); }

 else

 {

 thet3 = -alfa3 + abs(beta3);

 tests3.write(theta3);

 Serial.print("servo3\t ");

 Serial.println(theta3);

140

 delay(del);

 if (thet3 < 0)

 {

 theta3 = thet3 + 360;

 tests3.write(theta3);

 Serial.print("servo3\t ");

 Serial.println(theta3);

 delay(del);

 }

 else

 {

 theta3 = thet3;

 tests3.write(theta3);

 Serial.print("servo3 \t");

 Serial.println(theta3);

 delay(del);

 }

 }

}

2- Communication and control of Agrobot robotic Arm using ROS

and Arduino Microcontroller.

#if defined(ARDUINO) && ARDUINO >= 100

 #include "Arduino.h"

#else

 #include <WProgram.h>

#endif

//////////////////ROS

#include "Wire.h"

#define MIN_PULSE_WIDTH 650

#define MAX_PULSE_WIDTH 2350

#define FREQUENCY 50

#include "Arduino.h"

#include "ArduinoHardware.h"

#include <ros.h>

#include <std_msgs/UInt16.h>

#include <std_msgs/Int16MultiArray.h>

#include <sensor_msgs/JointState.h>

// Set ROS - handler, subscribe message, publish message

(debugging)

ros::NodeHandle nh;

std_msgs::Int16MultiArray str_msg2;

141

ros::Publisher chatter("Robot_Joints_Angles", &str_msg2);

int servoDegree[5];

int degreetolx15a[5];

// Define Motor position variables

double mtrDegreeBase;

double mtrDegreeSholder;

double mtrDegreeElbow;

double mtrDegreeWrist;

double mtrDegreePivot;

double mtrDegreeJaws;

//////////////////

#include <Stepper.h>

//BYTES LIMITS DEFINTIONS

#define GET_LOW_BYTE(A) (uint8_t)((A))

//Macro function get lower 8 bits of A

#define GET_HIGH_BYTE(A) (uint8_t)((A) >> 8)

//Macro function get higher 8 bits of A

#define BYTE_TO_HW(A, B) ((((uint16_t)(A)) << 8) | (uint8_t)(B))

//put A as higher 8 bits B as lower 8 bits which amalgamated

into 16 bits integer

///SERVO CONTROLLING PARAMETERS DEFINITIONS

#define

LOBOT_SERVO_FRAME_HEADER 0x55 //0x55 received indica

ting the arrival of data packets.

#define LOBOT_SERVO_MOVE_TIME_WRITE 1

//SERVO IDs DEFINITIONS

#define ID1 1

#define ID2 2

#define ID3 3

#define ID4 4

#define ID5 5

int motor_delays=250;

// Define LX16A position variables

double mtrDegreeBaseLX=195;

double mtrDegreeSholderLX=795;

double mtrDegreeElbowLX=687;

double mtrDegreeWristLX=748;

double mtrDegreePivotLX;

double mtrDegreeJawsLX;

/////////////////////ROS callback function

// Function move motor to ROS angle

void servo_cb(const sensor_msgs::JointState& cmd_msg)

{

 /*mtrDegreeBase =

trimLimits(radiansToDegrees(cmd_msg.position[0]));

142

 mtrDegreeSholder =

trimLimits(radiansToDegrees(cmd_msg.position[1]));

 mtrDegreeElbow =

trimLimits(radiansToDegrees(cmd_msg.position[2]));

 mtrDegreeWrist =

trimLimits(radiansToDegrees(cmd_msg.position[3]));

 mtrDegreePivot =

trimLimits(radiansToDegrees(cmd_msg.position[4]));*/

 //

 mtrDegreeBase = (radiansToDegrees(cmd_msg.position[0]));

 mtrDegreeSholder = (radiansToDegrees(-cmd_msg.position[1]));

 mtrDegreeElbow =(radiansToDegrees(cmd_msg.position[2]));

 mtrDegreeWrist = (radiansToDegrees(cmd_msg.position[3]));

 mtrDegreePivot =(radiansToDegrees(cmd_msg.position[4]));

 //

 // Store motor movements for publishing back to ROS (debugging)

 servoDegree[0] = mtrDegreeBase;

 servoDegree[1] = mtrDegreeSholder;

 servoDegree[2] = mtrDegreeElbow;

 servoDegree[3] = mtrDegreeWrist;

 servoDegree[4] = mtrDegreePivot;

//motorBase.write(mtrDegreeBase);

//motorSholder.write(mtrDegreeSholder);

//motorElbow.write(mtrDegreeElbow);

//motorWrist.write(mtrDegreeWrist);

/*motorPivot.write(mtrDegreePivot);*/

//LX16A

 mtrDegreeBaseLX=DegreestoLX16A(mtrDegreeBase);

 mtrDegreeSholderLX=DegreestoLX16A(mtrDegreeSholder-(30));

 mtrDegreeElbowLX=DegreestoLX16A(mtrDegreeElbow);

 mtrDegreeWristLX=DegreestoLX16A(mtrDegreeWrist);

 mtrDegreePivotLX=DegreestoLX16A(mtrDegreePivot);

//store LX16A VALUES

// Store motor movements for publishing back to ROS (debugging)

 degreetolx15a[0] = mtrDegreeBaseLX;

 degreetolx15a[1] = mtrDegreeSholderLX;

 degreetolx15a[2] = mtrDegreeElbowLX;

 degreetolx15a[3] = mtrDegreeWristLX;

 degreetolx15a[4] = mtrDegreePivotLX;

///

LobotSerialServoMove(Serial1, ID1,mtrDegreeBaseLX, motor_delays);

LobotSerialServoMove(Serial1, ID2,mtrDegreeSholderLX,

motor_delays);

143

LobotSerialServoMove(Serial1, ID3,mtrDegreeElbowLX,

motor_delays);

/*LobotSerialServoMove(Serial1, ID4,mtrDegreeWristLX, 1000);

//LobotSerialServoMove(Serial1, ID4,mtrDegreeWristLX, 1000);*/

}

/////////////////////ROS callback function finish

//////////ROS subscribe handling

ros::Subscriber<sensor_msgs::JointState> sub("joint_states",

servo_cb);

void setup() {

 // put your setup code here, to run once:

 Serial1.begin(115200);

 Serial.begin(115200);

 // Setup ROS fir subscribe and publish

 nh.getHardware()->setBaud(115200);

 nh.initNode();

 nh.subscribe(sub);

 nh.advertise(chatter);

}

void loop() {

 //str_msg2.data = servoDegree;

 //lx16a

 str_msg2.data = degreetolx15a;

 str_msg2.data_length = 5;

 chatter.publish(&str_msg2);

 nh.spinOnce();

 //put your main code here, to run repeatedly:

 /*LobotSerialServoMove(Serial1, ID5,900, 1000);

 Serial.println("turn1");

 delay(4000);

 LobotSerialServoMove(Serial1, ID5, 100, 1000);

 Serial.println("turn2");

 delay(4000);*/

}

 ///*****FUNCTION DEFINITIONS FOR SERVO MOTOR

PARAMETERS START /*****

//#define LOBOT_DEBUG 1 /*Debug ：print debug

value (function defintion)*/

byte LobotCheckSum(byte buf[])

{

 byte i;

 uint16_t temp = 0;

 for (i = 2; i < buf[3] + 2; i++) {

 temp += buf[i];

144

 }

 temp = ~temp;

 i = (byte)temp;

 return i;

}

//function to move servo postion with time setting

void LobotSerialServoMove(HardwareSerial &SerialX, uint8_t id,

int16_t position1, uint16_t time1)

{

 byte buf[10];

 if(position1 < 0)

 {

 position1 = 0;

 }

 if(position1 > 1000)

 {

 position1 = 1000;

 }

 buf[0] = buf[1] = LOBOT_SERVO_FRAME_HEADER;//header defintion

with hexadeicemel 0

 buf[2] = id;// servo id byte position

 buf[3] = 7;

 buf[4] = LOBOT_SERVO_MOVE_TIME_WRITE;

 buf[5] = GET_LOW_BYTE(position1);

 buf[6] = GET_HIGH_BYTE(position1);

 buf[7] = GET_LOW_BYTE(time1);

 buf[8] = GET_HIGH_BYTE(time1);

 buf[9] = LobotCheckSum(buf);

 SerialX.write(buf, 10);//write byffer length

}

// Convert radians to degreees

 double radiansToDegrees(float position_radians)

 {/*

 position_radians = position_radians * 57.2958;

 return position_radians;*/

 position_radians = position_radians + 1.6;

 return position_radians * 57.2958;

 }

 // Convert degrees to LX-16A values

double DegreestoLX16A(float position_LX16A)

 {

145

 position_LX16A = position_LX16A*(100/18);

 //

 if(position_LX16A < 0)

 {

 position_LX16A = 0;

 }

 if(position_LX16A > 1000)

 {

 position_LX16A = 1000;

 }

 //

 return position_LX16A;

 }

Appendix D ROS packages and Codes

URDF Codes

<?xml version="1.0" encoding="utf-8"?>

<!-- This URDF was automatically created by SolidWorks to URDF Exporter! Originally

created by Stephen Brawner (brawner@gmail.com)

 Commit Version: 1.6.0-4-g7f85cfe Build Version: 1.6.7995.38578

 For more information, please see http://wiki.ros.org/sw_urdf_exporter -->

<robot

 name="aibomech_agrobot_v2">

 <!-- * * * Link color for Rviz * * * -->

 <material name="blue">

 <color rgba="0 0 0.8 1"/>

 </material>

 <material name="red">

146

 <color rgba="0.8 0 0 1"/>

 </material>

 <material name="green">

 <color rgba="0 0.8 0 1"/>

 </material>

 <material name="yellow">

 <color rgba="1 1 0.2 1"/>

 </material>

 <!-- * * * Gazebo controller * * * -->

 <gazebo>

 <plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so">

 <robotNamespace>/</robotNamespace>

 </plugin>

 </gazebo>

 <!--

 <gazebo>

 <plugin name="joint_state_publisher"

filename="libgazebo_ros_joint_state_publisher.so">

<jointName>revolute_1,revolute_2,revolute_3,revolute_4,prismatic_1</jointName>

 </plugin>

 </gazebo>-->

 <!-- * * * Link Definitions * * * -->

147

 <link name="world"/>

 <link name="base_link">

 <inertial>

 <origin

 xyz="-0.010581 0.10145 0.0"

 rpy="0 0 0" />

 <mass

 value="0.2" />

 <inertia

 ixx="0.000025417"

 ixy="0.0"

 ixz="0.0"

 iyy="0.0006121"

 iyz="0.0"

 izz="0.0006167" />

 </inertial>

 <visual>

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

 <mesh

148

 filename="package://aibomech_agrobot_v2/meshes/base_link.STL" />

 </geometry>

 <material name="blue"/>

 </visual>

 <collision>

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

 <mesh

 filename="package://aibomech_agrobot_v2/meshes/base_link.STL" />

 </geometry>

 </collision>

 </link>

 <gazebo reference="base_link">

 <kp>1000.0</kp>

 <kd>10.0</kd>

 <mu1>10.0</mu1>

 <mu2>10.0</mu2>

 <material>Gazebo/Blue</material>

 </gazebo>

149

 <joint name="fixed" type="fixed">

 <parent link="world"/>

 <child link="base_link"/>

 <origin rpy="0 0 0" xyz="0.0 0.0 0.05"/>

 </joint>

 <link

 name="link_1">

 <inertial>

 <origin

 xyz="-0.0659 0.0125 0"

 rpy="0 0 0" />

 <mass

 value="0.15" />

 <inertia

 ixx="0.000014063"

 ixy="0.0"

 ixz="0.0"

 iyy="0.00025486"

 iyz="0.0"

 izz="0.0002633" />

 </inertial>

 <visual>

150

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

 <mesh

 filename="package://aibomech_agrobot_v2/meshes/link_1.STL" />

 </geometry>

 <material name="red"/>

 </visual>

 <collision>

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

 <mesh

 filename="package://aibomech_agrobot_v2/meshes/link_1.STL" />

 </geometry>

 </collision>

 </link>

 <gazebo reference="link_1">

 <kp>1000.0</kp>

 <kd>10.0</kd>

151

 <mu1>10.0</mu1>

 <mu2>10.0</mu2>

 <material>Gazebo/Red</material>

 </gazebo>

 <joint

 name="revolute_1"

 type="revolute">

 <origin

 xyz="-0.0905 0 0.1735"

 rpy="1.5708 0 -0.65897" />

 <parent

 link="base_link" />

 <child

 link="link_1" />

 <axis

 xyz="0 1 0" />

 <limit

 lower="-1.09"

 upper="2.1"

 effort="150"

 velocity="0" />

 </joint>

152

 <link

 name="link_2">

 <inertial>

 <origin

 xyz="-0.067695 0.012623 -4.1633E-17"

 rpy="0 0 0" />

 <mass

 value="0.15" />

 <inertia

 ixx="0.000014063"

 ixy="0.0"

 ixz="0.0"

 iyy="0.00026926"

 iyz="0.0"

 izz="0.0002777" />

 </inertial>

 <visual>

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

 <mesh

153

 filename="package://aibomech_agrobot_v2/meshes/link_2.STL" />

 </geometry>

 <material name="yellow"/>

 </visual>

 <collision>

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

 <mesh

 filename="package://aibomech_agrobot_v2/meshes/link_2.STL" />

 </geometry>

 </collision>

 </link>

 <gazebo reference="link_2">

 <kp>1000.0</kp>

 <kd>10.0</kd>

 <mu1>10.0</mu1>

 <mu2>10.0</mu2>

 <material>Gazebo/Yellow</material>

 </gazebo>

154

 <joint

 name="revolute_2"

 type="revolute">

 <origin

 xyz="-0.12 0 0"

 rpy="0 0.60223 0" />

 <parent

 link="link_1" />

 <child

 link="link_2" />

 <axis

 xyz="0 1 0" />

 <limit

 lower="-2.1"

 upper="1.11"

 effort="150"

 velocity="0" />

 </joint>

 <link

 name="link_3">

 <inertial>

 <origin

155

 xyz="-0.082394 -5.5511E-17 0.042771"

 rpy="0 0 0" />

 <mass

 value="0.081686" />

 <inertia

 ixx="0.00016721"

 ixy="0.0"

 ixz="0.0"

 iyy="0.0002399"

 iyz="0.0"

 izz="7.7701E-05" />

 </inertial>

 <visual>

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

 <mesh

 filename="package://aibomech_agrobot_v2/meshes/link_3.STL" />

 </geometry>

 <material name="green"/>

 </visual>

156

 <collision>

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

 <mesh

 filename="package://aibomech_agrobot_v2/meshes/link_3.STL" />

 </geometry>

 </collision>

 </link>

 <gazebo reference="link_3">

 <kp>1000.0</kp>

 <kd>10.0</kd>

 <mu1>10.0</mu1>

 <mu2>10.0</mu2>

 <material>Gazebo/Green</material>

 </gazebo>

 <joint

 name="revolute_3"

 type="revolute">

 <origin

 xyz="-0.12 0.013028 0"

157

 rpy="1.5708 0 0.49429" />

 <parent

 link="link_2" />

 <child

 link="link_3" />

 <axis

 xyz="0 1 0" />

 <limit

 lower="-2"

 upper="1.1"

 effort="5"

 velocity="0" />

 </joint>

 <link

 name="link_4">

 <inertial>

 <origin

 xyz="-0.044405 0.073633 -0.0018404"

 rpy="0 0 0" />

 <mass

 value="0.10" />

 <inertia

158

 ixx="0.000024375"

 ixy="0.0"

 ixz="0.0"

 iyy="0.00004208"

 iyz="0.0"

 izz="0.00003271" />

 </inertial>

 <visual>

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

 <mesh

 filename="package://aibomech_agrobot_v2/meshes/link_4.STL" />

 </geometry>

 <material name="blue"/>

 </visual>

 <collision>

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

159

 <mesh

 filename="package://aibomech_agrobot_v2/meshes/link_4.STL" />

 </geometry>

 </collision>

 </link>

 <gazebo reference="link_4">

 <kp>1000.0</kp>

 <kd>10.0</kd>

 <mu1>10.0</mu1>

 <mu2>10.0</mu2>

 <material>Gazebo/Blue</material>

 </gazebo>

 <joint

 name="revolute_4"

 type="revolute">

 <origin

 xyz="-0.041826 0 0.115"

 rpy="0 0.88733 1.5708" />

 <parent

 link="link_3" />

 <child

 link="link_4" />

160

 <axis

 xyz="0 1 0" />

 <limit

 lower="-1"

 upper="2.3"

 effort="10"

 velocity="0" />

 </joint>

 <link

 name="link_5">

 <inertial>

 <origin

 xyz="0.016259 0.041204 0.0025"

 rpy="0 0 0" />

 <mass

 value="0.05" />

 <inertia

 ixx="0.0000020833"

 ixy="0.0"

 ixz="0.0"

 iyy="0.00005208"

 iyz="0.0"

161

 izz="0.00005083" />

 </inertial>

 <visual>

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

 <mesh

 filename="package://aibomech_agrobot_v2/meshes/link_5.STL" />

 </geometry>

 <material name="red"/>

 </visual>

 <collision>

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

 <mesh

 filename="package://aibomech_agrobot_v2/meshes/link_5.STL" />

 </geometry>

 </collision>

 </link>

162

 <gazebo reference="link_5">

 <kp>1000.0</kp>

 <kd>10.0</kd>

 <mu1>10.0</mu1>

 <mu2>10.0</mu2>

 <material>Gazebo/Red</material>

 </gazebo>

 <joint

 name="prismatic_1"

 type="prismatic">

 <origin

 xyz="-0.075 0.080174 0"

 rpy="-0.84443 -1.5708 2.4684" />

 <parent

 link="link_4" />

 <child

 link="link_5" />

 <axis

 xyz="1 0 0" />

 <limit

 lower="-0.022"

 upper="0.01"

163

 effort="10"

 velocity="0" />

 </joint>

 <!-- * * * Motor and Hardware Definitions * * * -->

 <transmission name="tran1">

 <type>transmission_interface/SimpleTransmission</type>

 <joint name="revolute_1">

<hardwareInterface>hardware_interface/PositionJointInterface</hardwareInterface>

 </joint>

 <actuator name="motor1">

 <hardwareInterface>hardware_interface/PositionJointInterface</hardwareInterface>

 <mechanicalReduction>1</mechanicalReduction>

 </actuator>

 </transmission>

 <transmission name="tran2">

 <type>transmission_interface/SimpleTransmission</type>

 <joint name="revolute_2">

<hardwareInterface>hardware_interface/PositionJointInterface</hardwareInterface>

 </joint>

 <actuator name="motor2">

 <hardwareInterface>hardware_interface/PositionJointInterface</hardwareInterface>

 <mechanicalReduction>1</mechanicalReduction>

164

 </actuator>

 </transmission>

 <transmission name="tran3">

 <type>transmission_interface/SimpleTransmission</type>

 <joint name="revolute_3">

 <hardwareInterface>hardware_interface/PositionJointInterface</hardwareInterface>

 </joint>

 <actuator name="motor3">

<hardwareInterface>hardware_interface/PositionJointInterface</hardwareInterface>

 <mechanicalReduction>1</mechanicalReduction>

 </actuator>

 </transmission>

 <transmission name="tran4">

 <type>transmission_interface/SimpleTransmission</type>

 <joint name="revolute_4">

<hardwareInterface>hardware_interface/PositionJointInterface</hardwareInterface>

 </joint>

 <actuator name="motor4">

 <hardwareInterface>hardware_interface/PositionJointInterface</hardwareInterface>

 <mechanicalReduction>1</mechanicalReduction>

 </actuator>

165

 </transmission>

 <transmission name="tran5">

 <type>transmission_interface/SimpleTransmission</type>

 <joint name="prismatic_1">

 <hardwareInterface>hardware_interface/PositionJointInterface</hardwareInterface>

 </joint>

 <actuator name="motor5">

<hardwareInterface>hardware_interface/PositionJointInterface</hardwareInterface>

 <mechanicalReduction>1</mechanicalReduction>

 </actuator>

 </transmission>

</robot>

ROS Configuration Codes

joint_state_controller:

 type: joint_state_controller/JointStateController

 publish_rate: 50

arm_controller:

 type: position_controllers/JointTrajectoryController

 joints:

 - revolute_1

166

 - revolute_2

 - revolute_3

 - revolute_4

 - prismatic_1

 gains:

 revolute_1:

 p: 100

 d: 1

 i: 1

 i_clamp: 1

 revolute_2:

 p: 100

 d: 1

 i: 1

 i_clamp: 1

 revolute_3:

 p: 100

 d: 1

167

 i: 1

 i_clamp: 1

 revolute_4:

 p: 100

 d: 1

 i: 1

 i_clamp: 1

 prismatic_1:

 p: 100

 d: 1

 i: 1

 i_clamp: 1

168

Republic of Turkey

İzmir Kâtip Çelebi University

Graduate School of Natural and Applied Sciences

Automating Farming Operations

Using Robotic Technologies

Department of Robotics Engineering

Master’s / Doctoral Thesis

Basheer Altawil

ORCID 0000-0002-5716-7587

Thesis Advisor: Asst. Prof. Dr. Fatih Cemal CAN

January 2023

169

A
lt

aw
il

 A

u
to

m
at

in
g
 F

ar
m

in
g
 O

p
er

at
io

n
s

 M

A
S

T
E

R
’

S
 T

H
E

S
IS

2
0
2
3

U
si

n
g
 R

o
b
o
ti

cs
 T

ec
h
n
o
lo

g
ie

s

170

Curriculum Vitae

Name Surname : Basheer Altawil

E-mail (1) : y190233005@ogr.ikcu.edu.tr

E-mail (2) : basheeraltawil@gmail.com

Education:

2014–2019 İzmir Kâtip Çelebi University, Dept. of Mechatronics Eng.

2020–2023 İzmir Kâtip Çelebi University, Dept. of Robotics Eng.

Work Experience:

2017 Summer Internship Botaş – İzmir

2018 Summer Internship Delta process Automation - İzmir

2019 Robotics Engineer FabLab- İzmir municipality

2020 R&D Engineer Lazermarket – İzmir

2021-Continue… Co-Founder iFarm Startup

Publications (if any):

1. Automating Farming Operations Using Robotic Technologies, 10th International

Conference on Advanced Technologies (ICAT'22) ,from page 353 to page 359).

